...
首页> 外文期刊>Advanced Optical Materials >Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids
【24h】

Controlling Selective Doping and Energy Transfer between Transition Metal and Rare Earth Ions in Nanostructured Glassy Solids

机译:控制纳米结构玻璃态固体中过渡金属与稀土离子之间的选择性掺杂和能量转移

获取原文
获取原文并翻译 | 示例

摘要

Selective doping of optically active ions into the nanocrystalline phase(s) of glass ceramics is of interest for photoluminescence (PL) applications to control the energy transfer (ET) processes between dopants on the nanometer length scale. Here, the focus is on explaining the essential knowledge of the distribution of two groups of active ions: transition metal (Ni~(2+) and Cr~(3+)) and rare earth (Yb~(3+) and Er~(3+)) ions, which are doped into i) single-phase Ga_2O_3 and ii) dual-phase Ga_2O_3 and YF3 nanocrystals (NCs). These NCs are obtained by thermally crystallizing ternary silicate- and quinary fluorosilicatebased glasses, respectively. It is found that the two types of active ions can successfully be doped into Ga_2O_3 NCs, resulting in enhanced ET between the dopants because of the small separation distance of, e.g., <10 Å, whereas ET is significantly suppressed when Ga_2O_3 and YF_3 NCs are coprecipitated. In this case, the studied rare earth ions have a high propensity for being selectively doped in YF3 NCs. The studied transition-metal ions can always be found in Ga_2O_3 NCs irrespective of the presence of the fluoride phase. The selective doping and the ET between the two types of active ions can be controlled simultaneously on annealing. This may allow for the achievement of diverse PL properties, such as ultrabroadband near-infrared and upconversionmediated Stokes emissions.
机译:对于光致发光(PL)应用,以在纳米长度尺度上控制掺杂剂之间的能量转移(ET)过程,将光学活性离子选择性掺杂到玻璃陶瓷的纳米晶相中是很重要的。在这里,重点是解释关于两组活性离子分布的基本知识:过渡金属(Ni〜(2+)和Cr〜(3+))和稀土元素(Yb〜(3+)和Er〜 (3+))离子,这些离子被掺杂到i)单相Ga_2O_3和ii)双相Ga_2O_3和YF3纳米晶体(NC)中。这些NCs分别通过热结晶基于三元硅酸盐和五氟硅酸盐的玻璃来获得。发现可以将两种类型的活性离子成功地掺杂到Ga_2O_3 NCs中,由于较小的分离距离,例如<10Å,导致掺杂剂之间的ET增强,而当Ga_2O_3和YF_3 NCs分离时,ET被显着抑制。共沉淀。在这种情况下,所研究的稀土离子在YF3 NC中被选择性掺杂的可能性很高。无论是否存在氟化物相,都始终可以在Ga_2O_3 NC中找到所研究的过渡金属离子。两种类型的活性离子之间的选择性掺杂和ET可以在退火时同时控制。这可以允许实现多种PL特性,例如超宽带近红外和上变频介导的斯托克斯发射。

著录项

  • 来源
    《Advanced Optical Materials 》 |2018年第13期| 1701407.1-1701407.9| 共9页
  • 作者单位

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Center of analysis and measurement Harbin Institute of Technology Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    IFW Dresden Institute for Complex Materials Helmholtzstr. 20, 01069 Dresden, Germany,Department of Materials Science and Metallurgy University of Cambridge 27 Charles Babbage Road, Cambridge CB3 0FS, UK;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

    Key Laboratory of In-fiber Integrated Optics Ministry Education of China Harbin Engineering University Harbin 150001, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号