...
首页> 外文期刊>Advanced Optical Materials >Enhanced Quality Factors of Surface Lattice Resonances in Plasmonic Arrays of Nanoparticles
【24h】

Enhanced Quality Factors of Surface Lattice Resonances in Plasmonic Arrays of Nanoparticles

机译:纳米等离子阵列中表面晶格共振的增强质量因数。

获取原文
获取原文并翻译 | 示例

摘要

Key in the application of plasmonics is the realization of low loss or high quality (Q) factor resonances. Nanoparticle arrays are systems capable of sustaining remarkably high Q-factor resonances through the hybridization of plasmonic and photonic modes, known as surface lattice resonances (SLRs). SLRs result from the coupling of localized surface plasmon resonances (LSPRs) to in-plane orders of diffraction known as Rayleigh anomalies (RAs). To date, the highest Q-factors have been achieved with the (+/- 1, 0) diffraction orders. However, these Q-factors are highly sensitive to the angle of excitation. Here, a strategy is presented to generate high Q-factor SLRs with low dispersion by coupling LSPRs to the (0, +/- 1) diffraction orders. 2D arrays of silver nanoparticles are investigated experimentally and numerically, and it is shown that the Q-factor of SLRs critically depends on the quality of the metal film, the detuning between RAs and LSPRs, and the absorption of adhesive layer used between the substrate and the metallic nanoparticles. These silver nanoparticle arrays can achieve Q-factors higher than 330 in the visible range. These extraordinarily high Q-factors could be increased to values above 1500 if no adhesive layer is used, which could significantly improve sensors and enhance nonlinearities in plasmonic systems.
机译:等离子体技术应用的关键是实现低损耗或高质量(Q)因子共振。纳米粒子阵列是能够通过等离子和光子模式的杂交维持显着高Q因子共振的系统,称为表面晶格共振(SLR)。 SLR是由局部表面等离振子共振(LSPR)与被称为瑞利异常(RA)的面内衍射级耦合而产生的。迄今为止,最高的Q因子已达到(+/- 1,0)衍射级。但是,这些Q因子对激发角高度敏感。在这里,提出了一种通过将LSPR耦合到(0,+/- 1)衍射级来生成具有低色散的高Q因子SLR的策略。对银纳米颗粒的二维阵列进行了实验和数值研究,结果表明,SLR的Q因子主要取决于金属膜的质量,RA和LSPR之间的失谐以及基底与基底之间使用的粘合剂层的吸收。金属纳米粒子。这些银纳米颗粒阵列在可见光范围内可以获得高于330的Q因子。如果不使用粘合剂层,这些非常高的Q因子可以增加到1500以上的值,这可以显着改善传感器并增强等离子体系统中的非线性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号