首页> 外文期刊>Advanced Materials >Reversible Switching of Water-Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side-Chain Liquid-Crystal Polymer
【24h】

Reversible Switching of Water-Droplet Mobility on a Superhydrophobic Surface Based on a Phase Transition of a Side-Chain Liquid-Crystal Polymer

机译:基于侧链液晶聚合物的相变,超疏水性表面上的水滴流动性的可逆转换

获取原文
获取原文并翻译 | 示例
       

摘要

Superhydrophobic surfaces with different dynamic wettabilities, such as water repellent or water adhesive, have attracted increasing interest recently. The lotus leaf, with ultrahigh water contact angle (CA) and low sliding angle (SA), is widely known as a model superhydrophobic surface because of its self-cleaning property. Although superhydrophobic surfaces with high SA cannot be self-cleaning, they have many other potential applications, such as in the field of microfiuidic control systems. Superhydrophobic surfaces that can "pin" liquid droplets have been demonstrated for no-loss microdroplet transfer or trance-liquid reactors. It is known that super-hydrophobicity is effective for obtaining a small liquid interfacial contact area (ICA), at least for water-based liquids, which significantly reduces the mass loss in microdroplet transfer. To construct more dense and complicated microfiuidic devices, the integration of superhydrophobicity and reversible switching of water mobility would be desirable.
机译:具有不同动态润湿性的超疏水表面,例如斥水剂或水粘合剂,近来引起越来越多的关注。具有超高水接触角(CA)和低滑动角(SA)的荷叶因具有自清洁特性而被公认为超疏水表面模型。尽管具有高SA的超疏水表面无法自动清洁,但它们还有许多其他潜在应用,例如在微流体控制系统领域。已经证明可以“钉扎”液滴的超疏水表面已用于无损微滴转移或tr液反应器。众所周知,至少对于水基液体,超疏水性对于获得小的液体界面接触面积(ICA)是有效的,这大大降低了微滴转移中的质量损失。为了构造更致密和复杂的微流体装置,超疏水性和水迁移率的可逆转换的整合将是合乎需要的。

著录项

  • 来源
    《Advanced Materials》 |2009年第42期|4254-4258|共5页
  • 作者单位

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China) National Center for Nanoscience and Technology Beijing 100190 (P.R. China);

    Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 (P. R. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

    Department of Materials Physics and Chemistry School of Materials Science and Engineering University of Science and Technology Beijing Beijing 100083 (P. R. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

    Beijing National Laboratory for Molecular Sciences Center of Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 (PR. China);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号