...
首页> 外文期刊>Advanced Materials >Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells
【24h】

Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells

机译:分散在分层多孔纳米恐怖网络中的单个钴位点,用于燃料电池中的耐用和高功率的PGM阴极

获取原文
获取原文并翻译 | 示例

摘要

Increasing catalytic activity and durability of atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts for the oxygen reduction reaction (ORR) cathode in proton-exchange-membrane fuel cells remains a grand challenge. Here, a high-power and durable Co-N-C nanofiber catalyst synthesized through electrospinning cobalt-doped zeolitic imidazolate frameworks into selected polyacrylonitrile and poly(vinylpyrrolidone) polymers is reported. The distinct porous fibrous morphology and hierarchical structures play a vital role in boosting electrode performance by exposing more accessible active sites, providing facile electron conductivity, and facilitating the mass transport of reactant. The enhanced intrinsic activity is attributed to the extra graphitic N dopants surrounding the CoN(4)moieties. The highly graphitized carbon matrix in the catalyst is beneficial for enhancing the carbon corrosion resistance, thereby promoting catalyst stability. The unique nanoscale X-ray computed tomography verifies the well-distributed ionomer coverage throughout the fibrous carbon network in the catalyst. The membrane electrode assembly achieves a power density of 0.40 W cm(-2)in a practical H-2/air cell (1.0 bar) and demonstrates significantly enhanced durability under accelerated stability tests. The combination of the intrinsic activity and stability of single Co sites, along with unique catalyst architecture, provide new insight into designing efficient PGM-free electrodes with improved performance and durability.
机译:在质子 - 交换膜燃料电池中氧还原反应(ORR)阴极的原子分散的金属 - 氮 - 碳(M-N-C)催化剂的催化活性和耐久性仍然是一个大挑战。这里,通过将通过静电纺丝钴沸石咪唑酯骨包合成的高功率和耐用的CO-C纳米纤维催化剂,该型聚丙烯腈和聚(乙烯基吡咯烷酮)聚合物。不同的多孔纤维形态和等级结构在通过暴露更多可接近的活性位点,提供容易的电子导电性,并促进反应物的大规模运输来发挥至高无上的作用。增强的内在活动归因于围绕CON(4)部分的额外石墨N掺杂剂。催化剂中高石墨化的碳基质有利于提高碳耐腐蚀性,从而促进催化剂稳定性。独特的纳米级X射线计算断层扫描验证了催化剂中整个纤维碳网络的良好分布的离聚物覆盖。膜电极组件在实际的H-2 /空气电池(1.0巴)中达到0.40W cm(-2)的功率密度,并在加速稳定性试验下证明显着提高了耐久性。单一CO网站的内在活动和稳定性以及独特的催化剂架构的组合提供了新的洞察,以改善性能和耐用性的设计有效的PGM的电极。

著录项

  • 来源
    《Advanced Materials》 |2020年第46期|2003577.1-2003577.14|共14页
  • 作者单位

    SUNY Buffalo Dept Chem & Biol Engn Buffalo NY 14260 USA;

    Univ Louisiana Lafayette Dept Chem Engn Lafayette LA 70504 USA;

    Brookhaven Natl Lab Ctr Funct Nanomat Upton NY 11973 USA;

    SUNY Buffalo Dept Chem & Biol Engn Buffalo NY 14260 USA;

    Univ Louisiana Lafayette Dept Chem Engn Lafayette LA 70504 USA;

    Carnegie Mellon Univ Dept Mech Engn Pittsburgh PA 15213 USA;

    Univ South Carolina Dept Chem Engn Columbia SC 29208 USA;

    Univ Pittsburgh Dept Mech Engn & Mat Sci Pittsburgh PA 15261 USA;

    Oregon State Univ Sch Chem Biol & Environm Engn Corvallis OR 97331 USA;

    Argonne Natl Lab Xray Sci Div 9700 S Cass Ave Argonne IL 60439 USA;

    Oregon State Univ Sch Chem Biol & Environm Engn Corvallis OR 97331 USA;

    Oak Ridge Natl Lab Ctr Nanophase Mat Sci Oak Ridge TN 37831 USA;

    Univ Pittsburgh Dept Mech Engn & Mat Sci Pittsburgh PA 15261 USA;

    Brookhaven Natl Lab Ctr Funct Nanomat Upton NY 11973 USA;

    Oak Ridge Natl Lab Ctr Nanophase Mat Sci Oak Ridge TN 37831 USA;

    Univ Louisiana Lafayette Dept Chem Engn Lafayette LA 70504 USA;

    Carnegie Mellon Univ Dept Mech Engn Pittsburgh PA 15213 USA;

    SUNY Buffalo Dept Chem & Biol Engn Buffalo NY 14260 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrocatalysis; electrospinning; fuel cells; oxygen reduction; single Co sites;

    机译:电致分析;静电纺丝;燃料电池;氧气减少;单一CO网站;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号