...
首页> 外文期刊>Advanced Materials >High-Performance, Anode-Supported, Microtubular SOFC Prepared from Single-Step-Fabricated, Dual-Layer Hollow Fibers
【24h】

High-Performance, Anode-Supported, Microtubular SOFC Prepared from Single-Step-Fabricated, Dual-Layer Hollow Fibers

机译:由单步制造,双层中空纤维制备的高性能,阳极支撑的微管SOFC

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Microtubular solid oxide fuel cells (SOFCs) have been developed in recent years mainly due to their high specific surface area and fast thermal cycling. Previously, the fabrication of microtubular SOFCs was achieved through multiple-step processes.~([1-30]) A support layer, for example an anode support, is first prepared and presintered to provide mechanical strength to the fuel cell. The electrolyte layer is then deposited and sintered prior to the final coating of the cathode layer. Each step involves at least one high-temperature heat treatment, making the cell fabrication time-consuming and costly, with unstable control over cell quality. For a more economical fabrication of microtubular SOFCs with reliability and flexibility in quality control, an advanced dry-jet wet-extrusion technique, i.e., a phase inversion-based coextrusion process, was developed. Using this technique, an electrolyte/electrode (either anode or cathode) dual-layer hollow fiber (HF) can be formed in a single step. Generally, the electrolyte and electrode materials are separately mixed with solvent, polymer binder, and additives to form the outer and inner layer spinning suspensions, respectively, before being simultaneously coextruded through a triple-orifice spinneret, passing through an air gap and finally into a non-solvent external coagulation bath. In the mean time, a stream of non-solvent internal coagulant is supplied through the central bore of the spinneret. The thickness of the two layers is largely determined by the design of the spinneret and can be adjusted by the corresponding extrusion rate, while the macrostructure or morphology of the prepared HF precursor can be controlled by adjusting coextrusion parameters such as suspension viscosity, air gap, and flow rate of internal coagulant. The dual-layer HF precursor obtained is then co-sintered once at high temperature to remove the polymer binder and form a bounding between the ceramic materials.
机译:近年来,由于其高的比表面积和快速的热循环,已开发出微管固体氧化物燃料电池(SOFC)。以前,微管SOFC的制造是通过多步工艺完成的。[(1-30)]首先准备并预烧结支撑层,例如阳极支撑层,以为燃料电池提供机械强度。然后在最终涂覆阴极层之前沉积并烧结电解质层。每个步骤都涉及至少一个高温热处理,这使得电池制造既耗时又昂贵,并且对电池质量的控制不稳定。为了更经济地制造在质量控制方面具有可靠性和灵活性的微管SOFC,开发了一种先进的干喷湿法挤出技术,即基于相转化的共挤出工艺。使用此技术,可以在一个步骤中形成电解质/电极(阳极或阴极)双层中空纤维(HF)。通常,电解质和电极材料分别与溶剂,聚合物粘合剂和添加剂混合,分别形成外层和内层纺丝悬浮液,然后同时通过三孔喷丝头共挤出,通过气隙并最终进入非溶剂外部凝固浴。同时,通过喷丝头的中心孔供应非溶剂内部凝结剂流。两层的厚度在很大程度上取决于喷丝板的设计,可以通过相应的挤出速率进行调整,而制得的HF前驱体的宏观结构或形态可以通过调整共挤出参数(例如悬浮液粘度,气隙,和内部凝结剂的流速。然后将获得的双层HF前体在高温下共烧结一次以除去聚合物粘合剂并在陶瓷材料之间形成结合。

著录项

  • 来源
    《Advanced Materials》 |2011年第21期|p.2480-2483|共4页
  • 作者单位

    Department of Chemical Engineering Imperial College London London SW7 2AZ, UK;

    Department of Chemical Engineering Imperial College London London SW7 2AZ, UK;

    Department of Chemical Engineering Imperial College London London SW7 2AZ, UK;

    Department of Chemical Engineering Imperial College London London SW7 2AZ, UK;

    Department of Chemical Engineering Imperial College London London SW7 2AZ, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号