首页> 外文期刊>Advanced Materials >Tuning the Energy Level Offset between Donor and Acceptor with Ferroelectric Dipole Layers for Increased Efficiency in Bilayer Organic Photovoltaic Cells
【24h】

Tuning the Energy Level Offset between Donor and Acceptor with Ferroelectric Dipole Layers for Increased Efficiency in Bilayer Organic Photovoltaic Cells

机译:用铁电偶极子层调整施主和受主之间的能级偏移,以提高双层有机光伏电池的效率

获取原文
获取原文并翻译 | 示例
           

摘要

Organic photovoltaic (OPV) technology is one of the most attractive candidates for solving future energy problems due to its advantages of light weight, flexibility, low cost of materials and large scale production. The highest power conversion efficiency (PCE) of OPV devices has been increased to 8-9%.Despite significant progress, further increasing the PCE to over 15% is needed for OPV to compete with silicon solar cells and other thin-film photovoltaic technologies for commercialization. The thermodynamic efficiency limit of OPV devices is 22-27%, so there is much space for improvement. One grand challenge facing OPV device efficiency improvement is the significant energy loss incurred during the charge transfer from the donor to the acceptor, because of the energy level mismatch and the inefficient separation as well as the inefficient extraction of the bound electron-hole pairs, causing a large photovoltage loss in most OPV devices.For example, the open circuit voltage
机译:有机光伏(OPV)技术具有重量轻,柔韧性好,材料成本低和大规模生产的优点,是解决未来能源问题的最有吸引力的候选者之一。 OPV器件的最高功率转换效率(PCE)已提高到8-9%。尽管取得了重大进展,但OPV需要进一步将PCE提高到15%以上才能与硅太阳能电池和其他薄膜光伏技术竞争商业化。 OPV器件的热力学效率极限为22-27%,因此还有很大的改进空间。 OPV器件效率提高面临的一大挑战是,由于能级不匹配,分离效率低以及结合的电子-空穴对的提取效率低,导致电荷从供体到受体的转移过程中产生了巨大的能量损失,从而导致大多数OPV器件的光电压损失很大,例如开路电压

著录项

  • 来源
    《Advanced Materials》 |2012年第11期|p.1455-1460|共6页
  • 作者单位

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0656, USA;

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0656, USA;

    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0299, USA;

    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0299, USA;

    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0299, USA;

    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0299, USA;

    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0299, USA;

    Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0299, USA;

    Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, Nebraska 68588-0656, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号