首页> 外文期刊>Advanced Materials >A Light Incident Angle Switchable ZnO Nanorod Memristor: Reversible Switching Behavior Between Two Non-Volatile Memory Devices
【24h】

A Light Incident Angle Switchable ZnO Nanorod Memristor: Reversible Switching Behavior Between Two Non-Volatile Memory Devices

机译:光入射角可切换ZnO纳米棒忆阻器:两个非易失性存储设备之间的可逆切换行为

获取原文
获取原文并翻译 | 示例
           

摘要

Memristors that display the behaviors of a diversity of logic devices have attracted enormous scientific and industrial interest from researchers striving to improve information storage and processing techniques. Indeed, memristor devices are one of the most promising candidate approaches to next-generation memory technologies because they operate at low powers and offer high-density integration and high-speed access time. Memristive switching phenomena usually rely on repeated electrical resistive switching between non-volatile resistance states in an active material under the application of an electrical stimulus, such as a voltage or current. Recent reports have explored the use of a variety of external operating parameters, such as the modulation of an applied magnetic field, temperature, or illumination conditions to activate changes in the memristive switching behaviors. The introduction of these new stimuli can expand the applicability of memristors to a variety of environments. Among these signal controlling factor choices, the illumination conditions are particularly attractive because photon signals are easier to apply over long distances than electrical signals, and photon signals can efficiently manage the interactions between circuit devices without disruption by signal interference. The wave characteristics of photons allow for the facile manipulation of the light ray path to enable incident light angle control over the memristive switching. Conversely, the device orientation with respect to the photon source can determine the memristive switching properties.
机译:展示各种逻辑设备行为的忆阻器吸引了致力于改进信息存储和处理技术的研究人员的巨大科学和工业兴趣。的确,忆阻器器件是下一代存储器技术最有希望的候选方法之一,因为它们以低功耗运行,并提供高密度集成和高速访问时间。忆阻开关现象通常依赖于在施加电刺激(例如电压或电流)的情况下活性材料中的非易失性电阻状态之间的反复电阻切换。最近的报告探索了各种外部操作参数的使用,例如所施加磁场,温度或照明条件的调制,以激活忆阻开关行为的变化。这些新刺激的引入可以将忆阻器的适用性扩展到各种环境。在这些信号控制因素选择中,照明条件特别吸引人,因为光子信号比电信号更容易在长距离上施加,并且光子信号可以有效地管理电路设备之间的交互,而不会受到信号干扰的干扰。光子的波特性允许轻松控制光线路径,以实现忆阻开关的入射光角度控制。相反,器件相对于光子源的方向可以确定忆阻开关特性。

著录项

  • 来源
    《Advanced Materials》 |2013年第44期|6423-6429|共7页
  • 作者单位

    Surface Chemistry Laboratory of Electronic Materials Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang, 790-784, Korea;

    Advanced Device Laboratory Samsung Advanced Institute of Technology Yongin, Gyeonggi-do, 446-712, Korea;

    Surface Chemistry Laboratory of Electronic Materials Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang, 790-784, Korea;

    Surface Chemistry Laboratory of Electronic Materials Department of Chemical Engineering POSTECH (Pohang University of Science and Technology) Pohang, 790-784, Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号