...
首页> 外文期刊>Advanced Materials >Ultrasensitive Optomechanical Magnetometry
【24h】

Ultrasensitive Optomechanical Magnetometry

机译:超灵敏的光机电磁法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Whispering gallery mode (WGM) microresonators are a powerful tool for applications including lasing, optical switching, non-linear optics, and in particular, sensing. Due to their strong optical confinement and small mode volumes, such devices provide an excellent platform for strong light-matter interactions allowing, for instance, the detection of single proteins and viruses, as well as applications in cavity quantum electrodynamics and quantum computing. Furthermore, the combination of mechanical and optical resonances accessible in optomechanical WGMs such as silica microtoroids provides enhanced mechanical response to applied forces and optical readout with attometer precision. This has enabled rapid advances in the field of quantum optomechanics, including the demonstration of quantum-coherent coupling, optomechani-cally induced transparency, and optomechanical cooling. Furthermore, cavity optomechanical devices have led to the realization of state-of-the-art sensitivities in force sensing and accelerometry. Here, we report an optomechanical magnetometer operating for the first time in the 100 pT range, an advance of more than three orders of magnitude on the sole previously reported cavity optomechanical magnetometer. When compared with electronic magnetometers, optical magnetometers offer the intrinsic advantage of low electromagnetic interference and further, evade electronic measurement noise, which constrains the sensitivity and bandwidth of electronic magnetometers. In comparably sized electronic magnetostrictive magnetometers, electronic noise limits the sensitivity to values three-orders-of-magnitude inferior to the sensitivity reported here. The device operates at earth field, is fiber coupled, silicon-chip based, and achieves tens of megahertz bandwidth. Furthermore, non-linearities in the response of the magnetometer allow its functionality to be extended to frequencies as low as 2 Hz, though with reduced sensitivity of 150 nT Hz~(-1/2). Combined with 60 μm spatial resolution and microwatt power requirements, these unique capabilities offer the prospect for a range of potential applications including cryogen-free and microfluidic magnetic resonance imaging (MRI), and investigation of spin physics in condensed matter systems such as semiconductors and ultracold atom clouds.
机译:细语通道模式(WGM)微谐振器是功能强大的工具,适用于激光,光学开关,非线性光学,尤其是传感。由于其强大的光学限制和小模式体积,此类设备为强光-物质相互作用提供了一个极好的平台,从而允许例如检测单个蛋白质和病毒,以及在腔体量子电动力学和量子计算中的应用。此外,在光机械WGM(例如二氧化硅微环形线圈)中可达到的机械共振和光学共振相结合,可提高对施加力的机械响应,并具有测速仪精度。这使得量子光力学领域有了飞速发展,包括量子相干耦合的演示,光电子显微镜诱导的透明性以及光机械冷却。此外,腔室光机械设备已经实现了力感测和加速度测量中最先进的灵敏度。在这里,我们报道了一种光机械磁力计,其首次工作在100 pT范围内,比以前报道的唯一的腔式光机械磁力计提高了三个数量级。与电子磁力仪相比,光学磁力仪具有固有的优势,即电磁干扰低,并且可以避免电子测量噪声,从而限制了电子磁力仪的灵敏度和带宽。在尺寸相当的电子磁致伸缩磁力计中,电子噪声将灵敏度限制为劣于此处报告的灵敏度的三个数量级。该设备在地球场上运行,是基于光纤耦合的硅芯片,可实现数十兆赫兹的带宽。此外,磁力计响应的非线性使得其功能可以扩展到低至2 Hz的频率,尽管灵敏度降低了150 nT Hz〜(-1/2)。结合60μm的空间分辨率和微瓦功率要求,这些独特的功能为包括无制冷剂和微流体磁共振成像(MRI)在内的一系列潜在应用提供了前景,并研究了半导体和超冷等凝聚态系统中的自旋物理学原子云。

著录项

  • 来源
    《Advanced Materials》 |2014年第36期|6348-6353|共6页
  • 作者单位

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia;

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia;

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia;

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia;

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia;

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia,Centre for Engineered Quantum Systems University of Queensland St Lucia, Brisbane, QLD 4072, Australia;

    School of Mathematics and Physics University of Queensland St Lucia, Queensland 4072, Australia,Centre for Engineered Quantum Systems University of Queensland St Lucia, Brisbane, QLD 4072, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号