...
首页> 外文期刊>Advanced Functional Materials >Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices
【24h】

Influence of Annealing and Interfacial Roughness on the Performance of Bilayer Donor/Acceptor Polymer Photovoltaic Devices

机译:退火和界面粗糙度对双层施主/受主聚合物光伏器件性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Through controlled annealing of planar heterojunction (bilayer) devices based on the polyfluorene copolymers poly(9,9-dioctylfluorene-co-bis(N, N'-(4,butylphenyl))bis(N,N'-phenyl-1,4-phenylene)diamine) (PFB) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) we study the influence of interface roughness on the generation and separation of electron-hole pairs at the donor/acceptor interface. Interface structure is independently characterized by resonant soft X-ray reflectivity with the interfacial width of the PFB/F8BT heterojunction observed to systematically increase with annealing temperature from 1.6 nm for unannealed films to 16 nm with annealing at 200 ℃ for ten minutes. Photoluminescence quenching measurements confirm the increase in interface area by the three-fold increase in the number of excitons dissociated. Under short-circuit conditions, however, unannealed devices with the sharpest interface are found to give the best device performance, despite the increase in interfacial area (and hence the number of excitons dissociated) in annealed devices. The decrease in device efficiency with annealing is attributed to decreased interfacial charge separation efficiency, partly due to a decrease in the bulk mobility of the constituent materials upon annealing but also (and significantly) due to the increased interface roughness. We present results of Monte Carlo simulations that demonstrate that increased interface roughness leads to lower charge separation efficiency, and are able to reproduce the experimental current-voltage curves taking both increased interfacial roughness and decreased carrier mobility into account. Our results show that organic photovoltaic performance can be sensitive to interfacial order, and heterojunction sharpness should be considered a requirement for high performance devices.
机译:通过基于聚芴共聚物的聚(9,9-二辛基芴-co-双(N,N'-(4,丁基苯基))双(N,N'-苯基-1,4)的平面异质结(双层)器件的受控退火-苯撑二胺)(PFB)和聚(9,9-二辛基芴-共苯并噻二唑)(F8BT),我们研究了界面粗糙度对供体/受体界面上电子-空穴对的生成和分离的影响。界面结构的独立特征是谐振软X射线反射率,观察到PFB / F8BT异质结的界面宽度随着退火温度的升高而从未退火膜的1.6 nm逐渐增加到200℃退火10分钟的16 nm。光致发光猝灭测量结果证实,解离的激子数量增加了三倍,界面面积也随之增加。然而,在短路条件下,尽管退火设备中的界面面积(并因此解离的激子数量)增加,但具有最尖锐界面的未退火设备却能提供最佳的设备性能。伴随退火的器件效率的降低归因于界面电荷分离效率的降低,部分归因于退火时组成材料的整体迁移率的降低,也归因于界面粗糙度的提高(并且显着)。我们目前的蒙特卡洛模拟结果表明,增加的界面粗糙度会导致较低的电荷分离效率,并且能够考虑到增加的界面粗糙度和降低的载流子迁移率来再现实验电流-电压曲线。我们的结果表明,有机光伏性能可能对界面有序敏感,异质结锐度应视为高性能器件的要求。

著录项

  • 来源
    《Advanced Functional Materials》 |2010年第24期|p.4329-4337|共9页
  • 作者单位

    Department of Physics North Carolina State University Raleigh, NC 27695, USA;

    Department of Physics North Carolina State University Raleigh, NC 27695, USA,Synchrotron SOLEIL, Ormes des Merisiers, Saint Aubin, 91192, France;

    Department of Physics North Carolina State University Raleigh, NC 27695, USA,Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA94720, USA;

    Cavendish Laboratory Department of Physics University of Cambridge J J Thomson Ave, Cambridge, CB3 OHE, UK,Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada;

    Cavendish Laboratory Department of Physics University of Cambridge J J Thomson Ave, Cambridge, CB3 OHE, UK;

    School of Engineering and Computing Sciences Durham University Durham, DH1 3LE, UK;

    Department of Physics North Carolina State University Raleigh, NC 27695, USA;

    Cavendish Laboratory Department of Physics University of Cambridge J J Thomson Ave, Cambridge, CB3 OHE, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号