首页> 外文期刊>Advanced Materials for Optics and Electronics >Large Space-Charge Effects in a Nanostructured Proton Conductor
【24h】

Large Space-Charge Effects in a Nanostructured Proton Conductor

机译:纳米结构质子导体中的大空间电荷效应

获取原文
获取原文并翻译 | 示例
           

摘要

Decreasing the dimensions of heterogeneous mixtures of ionic conductors towards the nanoscale results in ionic conduction enhancements, caused by the increased influence of the interfacial space-charge regions. For a composite of TiO_2 anatase and solid acid CsHSO_4, the strong enhancement of the ionic conductivity at the nanoscale also can be assigned to this space-charge effect. Surprisingly high hydrogen concentrations in the order of TO21 cm~(-3) in TiO_2 are measured, which means that about 10% of the available sites for H~+ ions are filled on average. Such high concentrations require a specific elaboration of the space-charge model that is explicitly performed here, by taking account of the large occupation numbers on the exhaustible sites. It is shown that ionic defects with negative formation enthalpy reach extremely high concentrations near the interfaces and throughout the material. By performing first-principles density functional theory calculations, it is found that proton insertion from CsHSO_4 into the TiO_2 particles is preferred compared to neutral hydrogen atom insertion and indeed that the formation enthalpy is negative. Moreover, the average proton fractions in TiO_2, estimated by the theoretical ionic density profiles, are in good agreement with the experimental observations.
机译:朝着纳米尺度减小离子导体的非均质混合物的尺寸导致离子传导增强,这是由于界面空间电荷区域的影响增加所致。对于TiO_2锐钛矿和固体酸CsHSO_4的复合物,纳米级离子电导率的强烈增强也可以归因于这种空间电荷效应。测得的TiO_2中的氢气浓度令人惊讶,达到TO21 cm〜(-3)的水平,这意味着平均约有10%的H〜+离子可用位点被填充。如此高的浓度需要考虑到可利用场所上的大量占用数,因此需要详细阐述此处明确执行的空间电荷模型。结果表明,具有负形成焓的离子缺陷在界面附近和整个材料中达到极高的浓度。通过执行第一原理密度泛函理论计算,发现与中性氢原子插入相比,质子从CsHSO_4插入TiO_2粒子更可取,并且实际上形成焓为负。此外,通过理论离子密度分布图估算的TiO_2中的平均质子分数与实验观察结果非常吻合。

著录项

  • 来源
    《Advanced Materials for Optics and Electronics》 |2010年第23期|p.4107-4116|共10页
  • 作者单位

    Fundamental Aspects of Materials and Energy Department of Radiation, Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft (The Netherlands);

    Fundamental Aspects of Materials and Energy Department of Radiation, Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft (The Netherlands);

    Fundamental Aspects of Materials and Energy Department of Radiation, Radionuclides, and Reactors Faculty of Applied Sciences Delft University of Technology Mekelweg 15, 2629JB Delft (The Netherlands);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号