...
首页> 外文期刊>Advanced Functional Materials >Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells
【24h】

Boosting Infrared Light Harvesting by Molecular Functionalization of Metal Oxide/Polymer Interfaces in Efficient Hybrid Solar Cells

机译:通过高效混合太阳能电池中金属氧化物/聚合物界面的分子功能化促进红外光收集

获取原文
获取原文并翻译 | 示例

摘要

Hybrid solar cells based on light absorbing semiconducting polymers infiltrated in nanocrystalline TiO_2 electrodes, have emerged as an attractive concept, combining benefits of both low material and processing costs with well controlled nano-scale morphology. However, after over ten years of research effort, power conversion efficiencies remain around 0.5%. Here, a spectroscopic and device based investigation is presented, which leads to a new optimization route where by functionalization of the TiO_2 surface with a molecular electron acceptor promotes photoinduced electron transfer from a low-band gap polymer(poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4,7-(2,l,3-benzothiadia-zole)] (PCPDTBT) to the metal oxide. This boosts the infrared response and the power conversion efficiency to over 1%. As a further step, by "co-functionalizing" the TiO_2 surface with the electron acceptor and an organic dye-sensitizer, panchromatic spectral photoresponse is achieved in the visible to near-IR region. This novel architecture at the heterojunction opens new material design possibilities and represents an exciting route forward for hybrid photovoltaics.
机译:基于渗透到纳米晶TiO_2电极中的吸光半导体聚合物的混合太阳能电池已经成为一个吸引人的概念,它结合了低材料和加工成本的优势以及可控的纳米级形貌。但是,经过十多年的研究,功率转换效率仍保持在0.5%左右。在这里,提出了一种基于光谱学和基于器件的研究方法,这导致了一条新的优化途径,其中通过用分子电子受体对TiO_2表面进行功能化,促进了低带隙聚合物(poly [2,6-(4 ,4-双-(2-乙基己基)-4H-环戊[2,1-b; 3,4-b0]二噻吩)-alt-4,7-(2,l,3-苯并噻二唑-唑)](PCPDTBT ),将红外响应和功率转换效率提高到1%以上。作为进一步的步骤,通过将TiO_2表面与电子受体和有机染料敏化剂“共官能化”,可以得到全色光谱光响应。这种在异质结处的新颖架构为新的材料设计提供了可能性,并为混合光伏技术指明了令人振奋的前进方向。

著录项

  • 来源
    《Advanced Functional Materials 》 |2012年第10期| p.2160-2166| 共7页
  • 作者单位

    Oxford University Department of Physics Clarendon Laboratory, Parks Road, Oxford, OX13PU, UK Dipartimento di Fisica Politecnico di Milano P.zza L da Vinci 32, 20133 Milano, Italy;

    Center for Nano Science and Technology @Polimi Istituto Italiano di Tecnologia Via Pascoli 70/3 20133 Milano, Italy;

    Oxford University Department of Physics Clarendon Laboratory, Parks Road, Oxford, OX13PU, UK;

    Department of Materials Science and Engineering and Institute of Advanced Materials and Technology University of Washington Seattle, WA 98195, USA;

    Department of Materials Science and Engineering and Institute of Advanced Materials and Technology University of Washington Seattle, WA 98195, USA;

    Department of Materials Science and Engineering and Institute of Advanced Materials and Technology University of Washington Seattle, WA 98195, USA;

    Dipartimento di Fisica Politecnico di Milano P.zza L da Vinci 32, 20133 Milano, Italy Center for Nano Science and Technology @Polimi Istituto Italiano di Tecnologia Via Pascoli 70/3 20133 Milano, Italy;

    Oxford University Department of Physics Clarendon Laboratory, Parks Road, Oxford, OX13PU, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号