首页> 外文期刊>Advanced Functional Materials >Shape-Memory Microfluidics
【24h】

Shape-Memory Microfluidics

机译:形状记忆微流体

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Materials with embedded vascular networks afford rapid and enhanced control over bulk material properties including thermoregulation and distribution of active compounds such as healing agents or stimuli. Vascularized materials have a wide range of potential applications in self-healing systems and tissue engineering constructs. Here, the application of vascularized materials for accelerated phase transitions in stimuli-responsive microfluidic networks is reported. Poly(ester amide) elastomers are hygroscopic and exhibit thermo-mechanical properties (T_g ≈ 37 ℃) that enable heating or hydration to be used as stimuli to induce glassy-rubbery transitions. Hydration-dependent elasticity serves as the basis for stimuli-responsive shape-memory microfluidic networks. Recovery kinetics in shape-memory microfluidics are measured under several operating modes. Perfusion-assisted delivery of stimulus to the bulk volume of shape-memory microfluidics dramatically accelerates shape recovery kinetics compared to devices that are not perfused. The recovery times are 4.2 ± 0.1 h and 8.0 ± 0.3 h in the perfused and non-perfused cases, respectively. The recovery kinetics of the shape-memory microfluidic devices operating in various modes of stimuli delivery can be accurately predicted through finite element simulations. This work demonstrates the utility of vascularized materials as a strategy to reduce the characteristic length scale for diffusion, thereby accelerating the actuation of stimuli-responsive bulk materials.
机译:具有嵌入的血管网络的材料可提供对散装材料特性的快速和增强控制,包括热调节和活性化合物(如愈合剂或刺激剂)的分布。血管化材料在自愈系统和组织工程构造中具有广泛的潜在应用。在此,报道了血管化材料在刺激响应性微流体网络中用于加速相变的应用。聚(酯酰胺)弹性体具有吸湿性,并表现出热机械性能(T_g≈37℃),可以通过加热或水合作用来刺激玻璃态-橡胶态转变。水合依赖性弹性充当刺激响应形状记忆微流体网络的基础。在几种操作模式下测量形状记忆微流体的恢复动力学。与未灌注的设备相比,灌注辅助将刺激传递至形状记忆微流体的大部分体积可显着加快形状恢复动力学。在灌注和非灌注情况下,恢复时间分别为4.2±0.1 h和8.0±0.3 h。可以通过有限元模拟准确地预测在各种刺激传递模式下运行的形状记忆微流体装置的恢复动力学。这项工作证明了血管化材料作为减少扩散特征长度尺度的策略的实用性,从而加速了对刺激敏感的散装材料的驱动。

著录项

  • 来源
    《Advanced Functional Materials》 |2013年第38期|4832-4839|共8页
  • 作者单位

    Department of Biomedical Engineering Department of Materials Science and Engineering 5000 Forbes Avenue, WEH 3325 Pittsburgh, PA 15213-3890, USA;

    Department of Biomedical Engineering Department of Materials Science and Engineering 5000 Forbes Avenue, WEH 3325 Pittsburgh, PA 15213-3890, USA;

    Department of Biomedical Engineering Department of Materials Science and Engineering 5000 Forbes Avenue, WEH 3325 Pittsburgh, PA 15213-3890, USA,McGowan Institute of Regenerative Medicine 450 Technology Drive, Suite 300 Pittsburgh, PA 15219, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号