首页> 外文期刊>Advanced Functional Materials >Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow
【24h】

Normally Oriented Adhesion versus Friction Forces in Bacterial Adhesion to Polymer-Brush Functionalized Surfaces Under Fluid Flow

机译:流体流动下细菌黏附到聚合物刷功能化表面上的法向黏附力与摩擦力

获取原文
获取原文并翻译 | 示例
           

摘要

Bacterial adhesion is problematic in many diverse applications. Coatings of hydrophilic polymer chains in a brush configuration reduce bacterial adhesion by orders of magnitude, but not to zero. Here, the mechanism by which polymer-brush functionalized surfaces reduce bacterial adhesion from a flowing carrier fluid by relating bacterial adhesion with normally oriented adhesion and friction forces on polymer (PEG)-brush coatings of different softness is studied. Softer brush coatings deform more than rigid ones, which yields extensive bond-maturation and strong, normally oriented adhesion forces, accompanied by irreversible adhesion of bacteria. On rigid brushes, normally oriented adhesion forces remain small, allowing desorption and accordingly lower numbers of adhering bacteria result. Friction forces, generated by fluid flow and normally oriented adhesion forces, are required to oppose fluid shear forces and cause immobile adhesion. Summarizing, inclusion of friction forces and substratum softness provides a more complete mechanism of bacterial adhesion from flowing carrier fluids than available hitherto.
机译:在许多不同的应用中细菌粘附是有问题的。刷状配置的亲水性聚合物链涂层可将细菌附着力降低几个数量级,但不会降低到零。在这里,研究了聚合物刷功能化表面通过将细菌粘附力与正常定向的粘附力和在不同柔软度的聚合物(PEG)刷子涂料上的摩擦力相关联来减少流动的载液的细菌粘附力的机理。较软的刷子涂层比刚性的刷子涂层变形更大,这会产生广泛的粘结成熟度和强大的,通常定向的粘附力,并伴随着细菌的不可逆粘附。在硬毛刷上,通常定向的粘附力仍然很小,允许脱附,因此产生的粘附细菌数量减少。需要由流体流动产生的摩擦力和通常定向的粘附力来抵抗流体的剪切力并引起固定的粘附。总之,与迄今为止相比,包括摩擦力和基质柔软性提供了流动的载液中细菌粘附的更完整机制。

著录项

  • 来源
    《Advanced Functional Materials》 |2014年第28期|4435-4441|共7页
  • 作者单位

    University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713, AV, Groningen, The Netherlands;

    University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713, AV, Groningen, The Netherlands;

    University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713, AV, Groningen, The Netherlands;

    University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713, AV, Groningen, The Netherlands;

    University of Groningen and University Medical Center Groningen Department of Biomedical Engineering Antonius Deusinglaan 1 9713, AV, Groningen, The Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号