...
首页> 外文期刊>Advanced Functional Materials >Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles
【24h】

Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles

机译:DNA电导率的触发机制:DNA和氧化铁纳米粒子之间的可逆电子转移

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A new category of iron oxide nanoparticles (surface active maghemite nanoparticles (SAMNs, γ-Fe_2O_3)) allows the intimate chemical and electrical contact with DNA by direct covalent binding. On these basis, different DNA-nanoparticle architectures are developed and used as platform for studying electrical properties of DNA. The macroscopic 3D nanobioconjugate, constituted of 5% SAMNs, 70% water, and 25% DNA, shows high stability, electrochemical reversibility and, moreover, electrical conductivity (70-80 Ω cm~(-1)). Reversible electron transfer at the interface between nanoparticles and DNA is unequivocally demonstrated by Moessbauer spectroscopy, which shows the appearance of Fe(Ⅱ) atoms on nanoparticles following nanobioconjugate formation. This represents the first example of permanent electron exchange by DNA, as well as, of DNA conductivity at a macroscopic scale. Finally, the most probable configuration of the binding is tentatively modeled by density functional theory (DFT/UBP86/6-31+G~*), showing the occurrence of electron transfer from the organic orbitals of DNA to surface exposed Fe(Ⅲ) on nanoparticles, as well as the generation of defects (holes) on the DNA bases. The unequivocal demonstration of DNA conduction provides a new perspective in the five decades long debate about electrical properties of this biopolymer, further suggesting novel approaches for DNA exploitation in nanoelectronics.
机译:一类新的氧化铁纳米颗粒(表面活性磁赤铁矿纳米颗粒(SAMNs,γ-Fe_2O_3))可以通过直接共价结合与DNA紧密化学和电接触。在此基础上,开发了不同的DNA-纳米颗粒体系结构,并将其用作研究DNA电学性质的平台。由5%SAMN,70%水和25%DNA组成的宏观3D纳米生物共轭物显示出高稳定性,电化学可逆性以及电导率(70-80Ωcm〜(-1))。 Moessbauer光谱法清楚地证明了纳米粒子与DNA界面上的可逆电子转移,表明纳米生物共轭物形成后纳米粒子上出现了Fe(Ⅱ)原子。这代表了通过DNA进行永久电子交换以及宏观范围内DNA电导率的第一个例子。最后,通过密度泛函理论(DFT / UBP86 / 6-31 + G〜*)初步模拟了最可能的结合构型,表明发生了电子从DNA有机轨道转移到表面暴露的Fe(Ⅲ)上。纳米颗粒以及DNA碱基上的缺陷(孔)的产生。 DNA传导的明确展示在长达数十年的关于这种生物聚合物电特性的辩论中提供了新的视角,进一步为纳米电子学中DNA的开发提供了新的方法。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第12期|1822-1831|共10页
  • 作者单位

    Department of Comparative Biomedicine and Food Science University of Padova Legnaro 35044, Italy;

    Department of Comparative Biomedicine and Food Science University of Padova Legnaro 35044, Italy;

    Regional Centre of Advanced Technologies and Materials Department of Physical Chemistry Faculty of Science Palacky University Olomouc 779 00, Czech Republic;

    Regional Centre of Advanced Technologies and Materials Department of Physical Chemistry Faculty of Science Palacky University Olomouc 779 00, Czech Republic;

    Regional Centre of Advanced Technologies and Materials Department of Physical Chemistry Faculty of Science Palacky University Olomouc 779 00, Czech Republic;

    Regional Centre of Advanced Technologies and Materials Department of Physical Chemistry Faculty of Science Palacky University Olomouc 779 00, Czech Republic;

    Department of Molecular Medicine University of Padova Padova 35131, Italy;

    Department of Biomedical Sciences University of Padova Padova 35131, Italy;

    Department of Comparative Biomedicine and Food Science University of Padova Legnaro 35044, Italy;

    Department of Comparative Biomedicine and Food Science University of Padova Legnaro 35044, Italy;

    Department of Molecular Medicine University of Padova Padova 35131, Italy;

    Regional Centre of Advanced Technologies and Materials Department of Physical Chemistry Faculty of Science Palacky University Olomouc 779 00, Czech Republic;

    Department of Comparative Biomedicine and Food Science University of Padova Legnaro 35044, Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号