...
首页> 外文期刊>Advanced Functional Materials >High-Efficiency InP-Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management
【24h】

High-Efficiency InP-Based Photocathode for Hydrogen Production by Interface Energetics Design and Photon Management

机译:通过界面能学设计和光子管理实现高效的基于InP的制氢光阴极

获取原文
获取原文并翻译 | 示例

摘要

The solar energy conversion efficiency of photoelectrochemical (PEC) devices is usually limited by poor interface energetics, limiting the onset potential, and light reflection losses. Here, a three-pronged approach to obtain excellent performance of an InP-based photoelectrode for water reduction is presented. First, a buried p-n(+) junction is fabricated, which shifts the valence band edge favorably with respect to the hydrogen redox potential. Photoelectron spectroscopy substantiates that the shift of the surface photovoltage is mainly determined by the buried junction. Second, a periodic array of InP nanopillars is created at the surface of the photoelectrode to substantially reduce the optical reflection losses. This device displays an unprecedented photocathodic power-saved efficiency of 15.8% for single junction water reduction. Third, a thin TiO2 protection layer significantly increases the stability of the InP-based photoelectrode. Careful design of the interface energetics based on surface photovoltage spectroscopy allows obtaining a PEC cell with stable record performance in water reduction.
机译:光电化学(PEC)装置的太阳能转换效率通常受不良的界面能量限制,限制了启动电位和光反射损耗。在这里,提出了一种三管齐下的方法来获得基于InP的光电极在减水方面的优异性能。首先,制造掩埋的p-n(+)结,相对于氢氧化还原电势,其价带边缘有利地移动。光电子能谱证实,表面光电压的偏移主要由掩埋结决定​​。其次,在光电极表面形成一个周期性的InP纳米柱阵列,以大大减少光反射损耗。该器件显示出前所未有的光阴极节电效率,单节水减少了15.8%。第三,薄的TiO2保护层显着提高了InP基光电极的稳定性。基于表面光电压能谱的界面能学的精心设计可以使PEC电池在减水方面具有稳定的记录性能。

著录项

  • 来源
    《Advanced Functional Materials 》 |2016年第5期| 679-686| 共8页
  • 作者单位

    Eindhoven Univ Technol, Dept Chem Engn & Chem, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Chem Engn & Chem, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

    Eindhoven Univ Technol, Dept Chem Engn & Chem, Postbox 513, NL-5600 MB Eindhoven, Netherlands|Forschungszentrum Julich, Fundamental Electrochem IEK 9, D-52425 Julich, Germany;

    Eindhoven Univ Technol, Dept Appl Phys, Postbox 513, NL-5600 MB Eindhoven, Netherlands|Delft Univ Technol, Kavli Inst Nanosci Delft, NL-2600 LS Delft, Netherlands;

    Eindhoven Univ Technol, Dept Chem Engn & Chem, Postbox 513, NL-5600 MB Eindhoven, Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    interface energetics; photoelectrochemistry; photon management; protection layer; solar fuels;

    机译:界面能;光电化学;光子管理;保护层;太阳能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号