首页> 外文期刊>Advanced Functional Materials >Flexible Modulation of Electronic Band Structures of Wide Band Gap GaN Semiconductors Using Bioinspired, Nonbiological Helical Peptides
【24h】

Flexible Modulation of Electronic Band Structures of Wide Band Gap GaN Semiconductors Using Bioinspired, Nonbiological Helical Peptides

机译:使用生物启发的非生物螺旋肽对宽带隙GaN半导体的电子带结构进行灵活调制

获取原文
获取原文并翻译 | 示例
           

摘要

Modulation of the electronic band profiles of wide band gap GaN semiconductors is achieved by the macromolecular dipole potentials exerted from ordered monolayers of synthetic, nonbiological aldehyde terminated helical peptides deposited on wet chemically oxidized GaN surfaces functionalized with aminosilanes. The selective coupling of either N- or C-terminal to the amino-terminated surface enables one to control the direction of the dipole moment, while the number of amino acids determines its magnitude. After confirming the formation of highly ordered peptide monolayers, the impact of macromolecular dipole potentials is quantified by electrochemical impedance spectroscopy. Moreover, the chronoamperometry measurements of ferrocene-terminated peptides suggest that the transfer of electrons injected from ferrocene follows inelastic hopping, while the current responses of peptides with no ferrocene moieties are purely capacitive. Finally, the same functionalization steps are transferred to GaN/AlGaN/GaN high electron mobility transistor structures. Stable and quantitative modulation of the current-voltage characteristics of the 2D electron gas by the deposition of bioinspired peptides is a promising strategy for the macromolecular dipole engineering of GaN semiconductors.
机译:宽带隙GaN半导体电子带谱的调制是通过从合成的,非生物的,醛基封端的螺旋状肽的有序单层沉积在氨基硅烷官能化的湿化学氧化GaN表面上所产生的大分子偶极电位来实现的。 N末端或C末端与氨基末端表面的选择性偶联使人们能够控制偶极矩的方向,而氨基酸的数量决定了其大小。在确认了高度有序的肽单层的形成之后,通过电化学阻抗谱定量了大分子偶极电势的影响。此外,二茂铁封端的肽的计时电流法测量表明,从二茂铁注入的电子的转移遵循非弹性跳跃,而没有二茂铁部分的肽的电流响应是纯电容性的。最后,将相同的功能化步骤转移到GaN / AlGaN / GaN高电子迁移率晶体管结构。通过生物启发肽的沉积来稳定和定量地调节2D电子气的电流-电压特性是GaN半导体大分子偶极工程学的有前途的策略。

著录项

  • 来源
    《Advanced Functional Materials》 |2018年第2期|1704034.1-1704034.10|共10页
  • 作者单位

    Heidelberg Univ, Inst Phys Chem, Phys Chem Biosyst, D-69120 Heidelberg, Germany|Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Kyoto 6158510, Japan;

    Heidelberg Univ, Inst Phys Chem, Phys Chem Biosyst, D-69120 Heidelberg, Germany|Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Kyoto 6158510, Japan;

    Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Kyoto 6158510, Japan;

    Justus Liebig Univ Giessen, Phys Inst 1, Heinrich Buff Ring 16, D-35392 Giessen, Germany;

    Justus Liebig Univ Giessen, Phys Inst 1, Heinrich Buff Ring 16, D-35392 Giessen, Germany;

    Justus Liebig Univ Giessen, Phys Inst 1, Heinrich Buff Ring 16, D-35392 Giessen, Germany;

    Otto von Guericke Univ Madgeburg, Abt Halbleiterepitaxie, Postfach 4120, D-39016 Magdeburg, Germany;

    Otto von Guericke Univ Madgeburg, Abt Halbleiterepitaxie, Postfach 4120, D-39016 Magdeburg, Germany;

    Heidelberg Univ, Inst Phys Chem, Phys Chem Biosyst, D-69120 Heidelberg, Germany;

    Justus Liebig Univ Giessen, Phys Inst 1, Heinrich Buff Ring 16, D-35392 Giessen, Germany|Univ Bremen, Inst Festkorperphys, Otto Hahn Allee, D-28359 Bremen, Germany;

    Kyoto Univ, Grad Sch Engn, Dept Mat Chem, Kyoto 6158510, Japan;

    Heidelberg Univ, Inst Phys Chem, Phys Chem Biosyst, D-69120 Heidelberg, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2D electron gas; GaN; helical peptide; impedance spectroscopy; X-ray reflectivity;

    机译:二维电子气GaN螺旋肽阻抗谱X射线反射率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号