...
首页> 外文期刊>Advanced Functional Materials >Nb-Mediated Grain Growth and Grain-Boundary Engineering in Mg_3Sb_2-Based Thermoelectric Materials
【24h】

Nb-Mediated Grain Growth and Grain-Boundary Engineering in Mg_3Sb_2-Based Thermoelectric Materials

机译:基于MG_3SB_2的热电材料中的NB介导的晶粒生长和晶体边界工程

获取原文
获取原文并翻译 | 示例

摘要

The poor carrier mobility of polycrystalline Mg3Sb2 at low temperatures strongly degrades the thermoelectric performance. Ionized impurities are initially thought to dominate charge carrier scattering at low temperatures. Accordingly, the increased electrical conductivity by replacing Mg with metals such as Nb is also attributed to reduced ionized impurity scattering. Recent experimental and theoretical studies challenge this view and favor the grain boundary (GB) scattering mechanism. A reduction of GB scattering improves the low-temperature performance of Mg-3(Sb, Bi)(2) alloys. However, it is still elusive how these metal additions reduce the GB resistivity. In this study, Nb-free and Nb-added Mg3Sb2 are studied through diffraction, X-ray absorption spectroscopy, solid-state nuclear magnetic resonance spectroscopy, and atom probe tomography. It is shown that Nb does not enter the Mg3Sb2 matrix and remains in the metallic state. Besides, Nb diffuses along the GB forming a wetting layer, which modifies the interfacial energy and accelerates grain growth. The GB resistivity appears to be reduced by Nb-enrichment, as evidenced by modeling the electrical transport properties. This study not only confirms the GB scattering in Mg3Sb2 but also reveals the hitherto hidden role of metallic additives on enhancing grain growth and reducing the GB resistivity.
机译:在低温下的多晶Mg3sb2的载体迁移不良强烈降低了热电性能。最初认为离子化杂质在低温下占据电荷载体散射。因此,通过用诸如Nb的金属替换Mg来增加电导率的增加也归因于降低的电离杂质散射。最近的实验和理论研究挑战了这一观点并有利于晶界(GB)散射机制。 GB散射的降低改善了Mg-3(Sb,Bi)(2)合金的低温性能。然而,它仍然难以捉摸,这些金属添加如何降低GB电阻率。在该研究中,通过衍射,X射线吸收光谱,固态核磁共振光谱和原子探测断层扫描来研究Nb-Alland的Mg3SB2。结果表明,Nb不进入Mg3SB2矩阵并保持在金属状态。此外,Nb沿着形成润湿层的Gb扩散,其改变界面能量并加速晶粒生长。通过模拟电气传输性能来证明,GB电阻率似乎通过NB富集减少。这项研究不仅证实了MG3SB2中的GB散射,而且还揭示了金属添加剂对增强晶粒生长和降低GB电阻率的迄今为止隐藏的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号