首页> 外文期刊>Advanced Functional Materials >Direct Conversion of Fe_2O_3 to 3D Nanofibrillar PEDOT Microsupercapacitors
【24h】

Direct Conversion of Fe_2O_3 to 3D Nanofibrillar PEDOT Microsupercapacitors

机译:Fe_2O_3的直接转换为3D纳米纤维铅皮微矿体电容器

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Microsupercapacitors (mu SCs) are attractive electrochemical energy storage devices serving as alternatives to batteries in miniaturized portable electronics owing to high-power density and extended cycling stability. Current state-of-the-art microfabrication strategies are limited by costly steps producing materials with structural defects that lead to low energy density. This paper introduces an electrode engineering platform that combines conventional microfabrication and polymerization from the vapor phase producing 3D mu SCs of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). A sputtered Fe2O3 precursor layer enables deposition of a 250 nm thick polymer coating comprised of a high packing density of vertically aligned PEDOT nanofibers possessing exceptional electrical conductivity (3580 S cm(-1)). The 3D mu SCs exhibit state-of-the-art volumetric energy density (16.1 mWh cm(-3)) as well as areal (21.3 mF cm(-2)) and volumetric (400 F cm(-3)) capacitances in 1 m H2SO4 aqueous electrolyte. These figures of merit represent the highest values among conducting polymer-based mu SCs. Electrochemical performance is controlled by investigating coating thickness, gap distance, fractal geometry, and gel electrolyte (1 m H2SO4/polyvinyl alcohol). The quasisolid-state mu SCs exhibit extended rate capability (50 V s(-1)), retain 94% of original capacitance after 10 000 cycles and remain thermally stable up to 60 degrees C.
机译:微型电路施肥器(MU SCS)是有吸引力的电化学能量存储装置,作为由于高功率密度和延长的循环稳定性而作为小型化便携式电子产品中电池的替代品。目前最先进的微型制备策略受到昂贵的步骤,生产具有导致低能量密度的结构缺陷的材料。本文介绍了一种电极工程平台,其将常规微制造和聚合从导电聚合物聚合物(3,4-亚乙基氧噻吩)(PEDOT)的蒸汽相3DμSCS组合。溅射的Fe 2 O 3前体层能够沉积250nm厚的聚合物涂层,该厚聚合物涂层包括具有出色的导电性(3580scm(-1))的垂直取向型纳米纤维的高填充密度。 3D MU SCS表现出最先进的容积能量密度(16.1米WHC(-3))以及面积(21.3mF cm(-2))和体积(400 f cm(-3))电容1M H 2 SO 4水性电解质。这些优点的图表代表了导电聚合物的MU SCS之间的最高值。通过研究涂层厚度,间隙距离,分形几何形状和凝胶电解质(1M H 2 SO 4 /聚乙烯醇)来控制电化学性能。 Quasisolid-Sound MU SCS表现出扩展速率能力(50 V S(-1)),在10 000个循环后保留94%的原始电容,并且保持热稳定于60℃。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号