...
首页> 外文期刊>Advanced Functional Materials >Label-Free Bioanalysis Based on Low-Q Whispering Gallery Modes: Rapid Preparation of Microsensors by Means of Layer-by-Layer Technology
【24h】

Label-Free Bioanalysis Based on Low-Q Whispering Gallery Modes: Rapid Preparation of Microsensors by Means of Layer-by-Layer Technology

机译:基于低Q耳语画廊模式的无标记生物分析:借助分层技术快速制备微传感器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Low-Q-whispering gallery modes (low-Q-WGM) can be used for label-free detection of interactions between biomolecules, measuring their binding and release kinetics or for analysis of changes in the medium in real-time. The main advantage of the low-Q-WGM approach over other label-free methods is the possibility of measurements in small cavities as the method uses microparticles down to 6 mu m as sensors. Commercially available dye-doped microparticles that are used as low-Q-WGM sensors exhibit several drawbacks. Therefore, alternative particle types are developed and optimized as low-Q-WGM sensors. First, dye-doped particles made of different materials are screened. The most critical parameter for WGM performance is the refractive index (RI) of sensor particles. Furthermore, surface roughness of particles, determined by scanning electron microscopy and atomic force microscopy, affects their performance as WGM microsensors. In the second test, fluorescent dyes immobilized on nonfluorescent particles by means of nanometer thick layer-by-layer (LbL) films are shown to generate a strong WGM signal. The LbL-coated particles show remarkably less background fluorescence than dye-doped particles and are easier to prepare. Finally, this article proposes rapid preparation methods for WGM microparticle sensors based on various parameters such as material type, RI, surface roughness, and number of coated polymer layers.
机译:低Q耳语画廊模式(low-Q-WGM)可用于无标记检测生物分子之间的相互作用,测量其结合和释放动力学或实时分析培养基中的变化。与其他无标记方法相比,低Q-WGM方法的主要优点是可以在小腔中进行测量,因为该方法使用低至6微米的微粒作为传感器。用作低Q-WGM传感器的可商购的染料掺杂微粒具有几个缺点。因此,替代颗粒类型被开发并优化为低Q-WGM传感器。首先,筛选由不同材料制成的染料掺杂颗粒。 WGM性能的最关键参数是传感器颗粒的折射率(RI)。此外,通过扫描电子显微镜和原子力显微镜确定的颗粒表面粗糙度会影响其作为WGM微型传感器的性能。在第二项测试中,通过纳米厚的逐层(LbL)膜固定在非荧光颗粒上的荧光染料显示出产生强大的WGM信号。与染料掺杂的颗粒相比,LbL涂覆的颗粒显示出明显更少的背景荧光,并且更易于制备。最后,本文根据各种参数(例如材料类型,RI,表面粗糙度和涂层聚合物层数)提出了WGM微粒传感器的快速制备方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号