首页> 外文期刊>Advanced energy materials >Electronic Conductivity in the Li_(4/3)Ti_(5/3)O_4Li_(7/3)Ti_(5/3)O_4 System and Variation with State-of-Charge as a Li Battery Anode
【24h】

Electronic Conductivity in the Li_(4/3)Ti_(5/3)O_4Li_(7/3)Ti_(5/3)O_4 System and Variation with State-of-Charge as a Li Battery Anode

机译:Li_(4/3)Ti_(5/3)O_4Li_(7/3)Ti_(5/3)O_4系统中的电子电导率和以锂电池阳极为荷电状态的变化

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium titanate spinel (Li_(4/3)Ti_(5/3)O_4,LTO) has been studied extensively in recent years as a Li ion battery anode mate-rial. Its high theoretical capacity of 175 mAh g~(-1), "zero-strain" characteristics, and a flat 1.55 V potential (vs. Li~o) due to the two-phase coexistence of Li_(4/3)Ti_(5/3)O_4 and its lithiated counterpart Li_(7/3)Ti_(5/3)O_4 allow for a moderately high cell-level energy density and long cycle life when paired with high voltage (>3.5 V vs. Li~0) cathodes such as those based on Mn, Ni, and Co oxides. A recent scanning transmission electron microscopy study clarifies the Li positions in the two phases, the structure of the topotactic interface, and the charge distributions in each phase. Extremely high charge/discharge rates have been reported for nanocrystalline LTO. However, the insulating nature of LTO has been an area of concern, with reported electronic conductivities ranging from from 10~(-8) to <10~(-13) S cm~(-1). Correspondingly, there have been numerous studies on doping or coating with conductors to improve electronic conductivity. At the same time, there are indications that the lithiated phase itself may have high electronic conductivity, including electrochemical tests of sintered or powder-based electrodes that are free of conductive additive, and DFT-GGA computations from which it was concluded that there is a 2 eV bandgap for Li_(4/3)Ti_(5/3)O_4 and metallic behavior for Li_(7/3)Ti_(5/3)O_4 There are numerous measurements of electronic conductivity in as-prepared (delithiated) LTO, but surprisingly no data for the lithiated phase except for an approximate value "in the range of 10~(-2) S cm~(-1)" mentioned by Scharner et al. Table 1 summarizes the available electronic conductivity data. Since the ionic conductivity appears to lie in between the electronic conductivities of the endmem-bers, (e.g., 2.5 × 10~(-5) S cm~(-1)), a transition from electronic-to ionic-limited chemical diffusion might be expected during use. The state-of-charge at which this occurs will depend on the electronic conductivity of the endmembers as well as their physical distribution. In this Communication, we report the first direct measurement of the electronic conductivity of the fully lithiated phase Li_(7/3)Ti_(5/3)O_4 as well as its temperature dependence. In addition, the state-of-charge dependence of electronic conductivity across the two-phase coexistence field is reported.
机译:近年来,钛酸锂尖晶石(Li_(4/3)Ti_(5/3)O_4,LTO)作为锂离子电池负极材料已得到了广泛的研究。其高理论容量为175 mAh g〜(-1),具有“零应变”特性,并且由于Li_(4/3)Ti_()两相共存而具有平坦的1.55 V电位(相对于Li〜o)。 5/3)O_4及其锂化的对应物Li_(7/3)Ti_(5/3)O_4与高电压配对时(> 3.5 V vs.Li〜0)允许中等程度的电池级能量密度和长循环寿命阴极,例如基于Mn,Ni和Co氧化物的阴极。最近的扫描透射电子显微镜研究澄清了两相中的Li位置,全能界面的结构以及各相中的电荷分布。据报道,纳米晶体LTO具有极高的充电/放电速率。然而,LTO的绝缘性质一直是一个值得关注的领域,据报道电子电导率范围从10〜(-8)到<10〜(-13)S cm〜(-1)。相应地,已经进行了许多关于掺杂或涂覆导体以改善电子导电性的研究。同时,有迹象表明锂化相本身可能具有较高的电子电导率,包括对不含导电添加剂的烧结或粉末基电极的电化学测试,以及通过DFT-GGA计算得出的结论: Li_(4/3)Ti_(5/3)O_4的2 eV带隙和Li_(7/3)Ti_(5/3)O_4的金属性能在制备的(去锂化的)LTO中,有许多电导率测量,但是令人惊讶的是,除了Scharner等人提到的近似值“在10-(-2)S cm-1(-1)的范围内”之外,没有关于锂化相的数据。表1总结了可用的电子电导率数据。由于离子电导率似乎位于末端电子的电导率之间(例如2.5×10〜(-5)S cm〜(-1)),因此可能会发生从电子到离子受限的化学扩散的转变。预期在使用过程中。发生这种情况的电荷状态将取决于端部件的电子电导率及其物理分布。在本交流中,我们报告了完全锂化相Li_(7/3)Ti_(5/3)O_4的电子电导率及其温度依赖性的首次直接测量。另外,报告了跨两相共存场的电子电导率的荷电状态依赖性。

著录项

  • 来源
    《Advanced energy materials》 |2013年第9期|1125-1129|共5页
  • 作者单位

    Massachusetts Institute of Technology Cambridge, MA 02139, USA;

    Massachusetts Institute of Technology Cambridge, MA 02139, USA;

    Massachusetts Institute of Technology Cambridge, MA 02139, USA;

    Massachusetts Institute of Technology Cambridge, MA 02139, USA;

    Massachusetts Institute of Technology Cambridge, MA 02139, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号