首页> 外文期刊>Advanced energy materials >Donor-Acceptor Shape Matching Drives Performance in Photovoltaics
【24h】

Donor-Acceptor Shape Matching Drives Performance in Photovoltaics

机译:施主-受主形状匹配驱动光伏性能

获取原文
获取原文并翻译 | 示例
           

摘要

While the demonstrated power conversion efficiency of organic photovoltaics (OPVs) now exceeds 10%, new design rules are required to tailor interfaces at the molecular level for optimal exciton dissociation and charge transport in higher efficiency devices. We show that molecular shape-complementarity between donors and acceptors can drive performance in OPV devices. Using core hole clock (CHC) X-ray spectroscopy and density functional theory (DFT), we compare the electronic coupling, assembly, and charge transfer rates at the interface between C_(60) acceptors and flat- or contorted-hexabenzocorone (HBC) donors. The HBC donors have similar optoelectronic properties but differ in molecular contortion and shape matching to the fullerene acceptors. We show that shape-complementarity drives self-assembly of an intermixed morphology with a donor/acceptor (D/A) ball-and-socket interface, which enables faster electron transfer from HBC to C_(60). The supramolecular assembly and faster electron transfer rates in the shape complementary heterojunction lead to a larger active volume and enhanced exciton dissociation rate. This work provides fundamental mechanistic insights on the improved efficiency of organic photovoltaic devices that incorporate these concave/convex D/A materials.
机译:虽然目前已证明的有机光伏(OPV)的功率转换效率超过10%,但仍需要新的设计规则来在分子水平上定制界面,以在更高效率的器件中实现最佳的激子离解和电荷传输。我们表明,供体和受体之间的分子形状互补可以驱动OPV设备的性能。使用核心孔时钟(CHC)X射线光谱和密度泛函理论(DFT),我们比较了C_(60)受体与平面或扭曲的六苯并甲酮(HBC)之间的界面处的电子耦合,组装和电荷转移速率捐助者。 HBC供体具有相似的光电特性,但在分子扭曲和形状方面与富勒烯受体不同。我们显示形状互补驱动了自组装的供体/受体(D / A)球窝界面混合形态的自组装,从而使电子从HBC更快地转移到C_(60)。形状互补异质结中的超分子组装和更快的电子转移速率导致更大的活性体积和增强的激子离解速率。这项工作为结合这些凹/凸D / A材料的有机光伏器件的效率提高提供了基本的机械原理。

著录项

  • 来源
    《Advanced energy materials》 |2013年第7期|894-902|共9页
  • 作者单位

    Energy Frontier Research Center Columbia University New York, NY 10027;

    Department of Physics Faculty of Mathematics and Physics University of Ljubljana, Slovenia,Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Centra S3, CNR-lstituto Nanoscienze, 1-41125 Modena, Italy;

    Centra S3, CNR-lstituto Nanoscienze, 1-41125 Modena, Italy;

    Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy,Department of Physics University of Trieste 1-34123 Trieste, Italy Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Department of Chemistry Columbia University, New York, NY 10027;

    Department of Electrical Engineering Columbia University New York, NY 10027;

    Department of Chemistry Columbia University, New York, NY 10027;

    Department of Chemistry Columbia University, New York, NY 10027;

    Polymers Division National Institute of Standards and Technology Gaithersburg, MD 20899;

    Department of Chemistry Columbia University, New York, NY 10027;

    Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy,Department of Physics University of Trieste 1-34123 Trieste, Italy Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Department of Physics Faculty of Mathematics and Physics University of Ljubljana, Slovenia,Laboratorio TASC/IOM-CNR, Area di ricerca, Trieste, Italy;

    Department of Electrical Engineering Columbia University New York, NY 10027;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号