...
首页> 外文期刊>Advanced energy materials >The Effects of Catalyst Layer Deposition Methodology on Electrode Performance
【24h】

The Effects of Catalyst Layer Deposition Methodology on Electrode Performance

机译:催化剂层沉积方法对电极性能的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The catalyst layer of the cathode is arguably the most critical component of low-temperature fuel cells and carbon dioxide (CO_2) electrolysis cells because their performance is typically limited by slow oxygen (O_2) and CO_2 reduction kinetics. While significant efforts have focused on developing cathode catalysts with improved activity and stability, fewer efforts have focused on engineering the catalyst layer structure to maximize catalyst utilization and overall electrode and system performance. Here, we study the performance of cathodes for O_2 reduction and CO_2 reduction as a function of three common catalyst layer preparation methods: hand-painting, air-brushing, and screen-printing. We employed ex-situ X-ray micro-computed tomography (MicroCT) to visualize the catalyst layer structure and established data processing procedures to quantify catalyst uniformity. By coupling structural analysis with in-situ electrochemical characterization, we directly correlate variation in catalyst layer morphology to electrode performance. MicroCT and SEM analyses indicate that, as expected, more uniform catalyst distribution and less particle agglomeration, lead to better performance. Most importantly, the analyses reported here allow for the observed differences over a large geometric volume as a function of preparation methods to be quantified and explained for the first time. Depositing catalyst layers via a fully-automated air-brushing method led to a 56% improvement in fuel cell performance and a significant reduction in electrode-to-electrode variability. Furthermore, air-brushing catalyst layers for CO_2 reduction led to a 3-fold increase in partial CO current density and enhanced product selectivity (94% CO) at similar cathode potential but a 10-fold decrease in catalyst loading as compared to previous reports.
机译:阴极的催化剂层可以说是低温燃料电池和二氧化碳(CO_2)电解池中最关键的组成部分,因为它们的性能通常受到缓慢的氧气(O_2)和CO_2还原动力学的限制。尽管大量的努力集中在开发具有改善的活性和稳定性的阴极催化剂上,但是较少的努力集中在工程化催化剂层结构上以最大化催化剂的利用率以及整体电极和系统性能。在这里,我们研究了阴极对O_2和CO_2还原性能的影响,这是三种常见的催化剂层制备方法的函数:手绘,喷涂和丝网印刷。我们采用了异位X射线计算机断层扫描(MicroCT)来可视化催化剂层的结构,并建立了数据处理程序来量化催化剂的均匀性。通过将结构分析与原位电化学表征相结合,我们将催化剂层形态的变化与电极性能直接相关。 MicroCT和SEM分析表明,正如预期的那样,更均匀的催化剂分布和更少的颗粒团聚可以带来更好的性能。最重要的是,此处报道的分析首次允许量化和解释根据制备方法而在较大几何体积上观察到的差异。通过全自动吹气法沉积催化剂层可将燃料电池性能提高56%,并显着降低电极间的可变性。此外,与以前的报道相比,用于减少CO_2的喷吹催化剂层导致部分CO电流密度增加了3倍,并且在类似的阴极电势下提高了产品选择性(94%CO),但催化剂负载量却减少了10倍。

著录项

  • 来源
    《Advanced energy materials》 |2013年第5期|589-599|共11页
  • 作者单位

    Department of Chemical & Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL, USA,International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University Fukuoka, Japan;

    Department of Chemical & Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL, USA,Department of Chemical Engineering Massachusetts Institute of Technology Cambridge MA, USA;

    Department of Chemical & Biomolecular Engineering University of Illinois at Urbana-Champaign Urbana IL, USA,International Institute for Carbon Neutral Energy Research (WPI-I2CNER) Kyushu University Fukuoka, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号