...
首页> 外文期刊>Advanced energy materials >Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries
【24h】

Si-Encapsulating Hollow Carbon Electrodes via Electroless Etching for Lithium-Ion Batteries

机译:锂离子电池化学刻蚀的硅包裹空心碳电极

获取原文
获取原文并翻译 | 示例

摘要

Remarkable improvements in the electrochemical performance of Si materials for Li-ion batteries have been recently achieved, but the inherent volume change of Si still induces electrode expansion and external cell deformation. Here, the void structure in Si-encapsulating hollow carbons is optimized in order to minimize the volume expansion of Si-based anodes and improve electrochemical performance. When compared to chemical etching, the hollow structure is achieved via electroless etching is more advanced due to the improved electrical contact between carbon and Si. Despite the very thick electrodes (30 ~ 40 μm), this results in better cycle and rate performances including little capacity fading over 50 cycles and 1100 mA h g~(-1) at 2C rate. Also, an in situ dilatometer technique is used to perform a comprehensive study of electrode thickness change, and Si-encapsulating hollow carbon mitigates the volume change of electrodes by adoption of void space, resulting in a small volume increase of 18% after full lithiation corresponding with a reversible capacity of about 2000 mA h g~(-1).
机译:最近已经实现了用于锂离子电池的硅材料的电化学性能的显着改善,但是硅固有的体积变化仍然导致电极膨胀和外部电池变形。在此,对Si包封的中空碳中的空隙结构进行了优化,以最大程度地减少Si基阳极的体积膨胀并提高电化学性能。当与化学蚀刻相比时,由于改善了碳和Si之间的电接触,通过无电蚀刻获得的中空结构更加先进。尽管电极很厚(30〜40μm),但仍具有更好的循环和倍率性能,包括在50个循环中几乎没有容量衰减,在2C速率下为1100 mA h g〜(-1)。同样,使用原位膨胀计技术对电极厚度变化进行全面研究,并且硅包埋的中空碳通过采用空隙空间减轻了电极的体积变化,从而在完全锂化后相应地使体积增加了18%具有约2000 mA hg〜(-1)的可逆容量。

著录项

  • 来源
    《Advanced energy materials 》 |2013年第2期| 206-212| 共7页
  • 作者单位

    School of Chemical and Biological Engineering Seoul National University, Seoul 151-744, Korea;

    Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology KIER-UNIST Advanced Center for Energy Ulsan, 689-798, Korea;

    School of Chemical and Biological Engineering Seoul National University, Seoul 151-744, Korea;

    Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology KIER-UNIST Advanced Center for Energy Ulsan, 689-798, Korea;

    Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology KIER-UNIST Advanced Center for Energy Ulsan, 689-798, Korea;

    Korea Institute of Energy Research (KIER) Daejon, 305-343, Korea;

    School of Chemical and Biological Engineering Seoul National University, Seoul 151-744, Korea;

    Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology KIER-UNIST Advanced Center for Energy Ulsan, 689-798, Korea;

    Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology KIER-UNIST Advanced Center for Energy Ulsan, 689-798, Korea;

    Interdisciplinary School of Green Energy Ulsan National Institute of Science and Technology KIER-UNIST Advanced Center for Energy Ulsan, 689-798, Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号