首页> 外文期刊>Advanced energy materials >A Three-Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes
【24h】

A Three-Dimensionally Interconnected Carbon Nanotube–Conducting Polymer Hydrogel Network for High-Performance Flexible Battery Electrodes

机译:高性能柔性电池电极的三维互连碳纳米管导电聚合物水凝胶网络

获取原文
获取原文并翻译 | 示例
           

摘要

High-performance flexible energy-storage devices have great potential as power sources for wearable electronics. One major limitation to the realization of these applications is the lack of flexible electrodes with excellent mechanical and electrochemical properties. Currently employed batteries and supercapacitors are mainly based on electrodes that are not flexible enough for these purposes. Here, a three-dimensionally interconnected hybrid hydrogel system based on carbon nanotube (CNT)-conductive polymer network architecture is reported for high-performance flexible lithium ion battery electrodes. Unlike previously reported conducting polymers (e.g., polyaniline, polypyrrole, polythiophene), which are mechanically fragile and incompatible with aqueous solution processing, this interpenetrating network of the CNT-conducting polymer hydrogel exibits good mechanical properties, high conductivity, and facile ion transport, leading to facile electrode kinetics and high strain tolerance during electrode volume change. A high-rate capability for TiO2 and high cycling stability for SiNP electrodes are reported. Typically, the flexible TiO2 electrodes achieved a capacity of 76 mAh g–1 in 40 s of charge/discharge and a high areal capacity of 2.2 mAh cm–2 can be obtained for flexible SiNP-based electrodes at 0.1C rate. This simple yet efficient solution process is promising for the fabrication of a variety of high performance flexible electrodes.
机译:高性能柔性储能设备作为可穿戴电子设备的电源具有巨大的潜力。实现这些应用的一个主要限制是缺乏具有优异机械和电化学性能的柔性电极。当前使用的电池和超级电容器主要基于电极,这些电极对于这些目的还不够灵活。在此,针对高性能柔性锂离子电池电极,报道了一种基于碳纳米管(CNT)-导电聚合物网络架构的三维互连混合水凝胶系统。与先前报道的导电聚合物(例如,聚苯胺,聚吡咯,聚噻吩)在机械上易碎并且与水溶液处理不兼容的情况不同,这种导电碳纳米管的聚合物网络互穿网络具有良好的机械性能,高电导率和便捷的离子传输能力,因此在电极体积变化过程中易于电极动力学和高应变容限。据报道,TiO2具有高速率能力,而SiNP电极具有高循环稳定性。通常,柔性TiO2电极在40 s的充电/放电时间内达到76 mAh g–1的容量,在0.1C的速率下,基于SiNP的柔性电极可获得2.2 mAh cm–2的高面积容量。这种简单而有效的解决方法有望用于制造各种高性能的柔性电极。

著录项

  • 来源
    《Advanced energy materials》 |2014年第12期|1-10|共10页
  • 作者单位

    Department of Chemical Engineering Stanford University Stanford CA USA;

    Department of Chemical Engineering Stanford University Stanford CA USA;

    Department of Chemical Engineering Stanford University Stanford CA USA;

    Department of Materials Science and Engineering Stanford University Stanford CA USA;

    Department of Chemical Engineering Stanford University Stanford CA USA;

    Department of Chemical Engineering Stanford University Stanford CA USA;

    National Laboratory of Microstructures (Nanjing) School of Electronic Science and Engineering Nanjing University Nanjing China;

    Department of Chemical Engineering Tsinghua University Beijing P. R. China;

    Department of Materials Science and Engineering Stanford University Stanford CA USA;

    Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory Menlo Park CA USA;

    Department of Chemical Engineering Stanford University Stanford CA USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    carbon nanotubes; conducting polymers; hydrogels; flexible electrodes; energy storage;

    机译:碳纳米管;导电聚合物;水凝胶;柔性电极;储能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号