...
首页> 外文期刊>Advanced energy materials >Quantitative Analysis and Visualized Evidence for High Charge Separation Efficiency in a Solid-Liquid Bulk Heterojunction
【24h】

Quantitative Analysis and Visualized Evidence for High Charge Separation Efficiency in a Solid-Liquid Bulk Heterojunction

机译:固液体异质结中高电荷分离效率的定量分析和可视化证据

获取原文
获取原文并翻译 | 示例

摘要

In the past few decades, some novel low-cost nanostructured devices have been explored for converting solar energy into electrical or chemical energy, such as organic photovoltaic cells, photoelectrochemical solar cells, and solar water splitting cells. Generally, higher light absorption and/or charge separation efficiency are considered as the main reasons for improved performance in a nanostructured device versus a planar structure. However, quantitative analysis and definite experimental evidence remain elusive. Here, using BiVO4 as an example, comparable samples with porous and dense structures have been prepared by a simple method. The porous and dense films are assembled into a solid-electrolyte bulk and planar heterojunction, respectively. Some quantitative results are obtained by decoupling photon absorption, interfacial charge transfer, and charge separation processes. These results suggest that higher charge separation efficiency is mainly responsible for enhanced performance in a solid-electrolyte bulk heterojunction. Moreover, we also present visualized evidence to show higher charge separation efficiency comes from a shorter photo-generated hole diffusion distance in a bulk heterojunction. These results can deepen understanding charge transfer in a bulk heterojunction and offer guidance to design a more efficient low-cost device for solar conversion and storage.
机译:在过去的几十年中,已经探索了一些新颖的低成本纳米结构器件来将太阳能转换成电能或化学能,例如有机光伏电池,光电化学太阳能电池和太阳能水分解电池。通常,较高的光吸收和/或电荷分离效率被认为是与平面结构相比在纳米结构器件中改善性能的主要原因。但是,定量分析和确切的实验证据仍然难以捉摸。这里,以BiVO4为例,通过简单的方法制备了具有多孔和致密结构的可比较样品。多孔膜和致密膜分别组装成固体电解质块和平面异质结。通过解耦光子吸收,界面电荷转移和电荷分离过程可以获得一些定量结果。这些结果表明较高的电荷分离效率主要是导致固体电解质本体异质结性能增强的原因。此外,我们还提供了可视化的证据,表明更高的电荷分离效率来自于本体异质结中较短的光生空穴扩散距离。这些结果可以加深对体异质结中电荷转移的理解,并为设计用于太阳能转换和存储的更高效低成本器件提供指导。

著录项

  • 来源
    《Advanced energy materials 》 |2014年第9期| 1-7| 共7页
  • 作者单位

    Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing P.R. China;

    Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing P.R. China;

    College of Engineering and Applied Science Nanjing University Nanjing P.R. China;

    Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing P.R. China;

    College of Engineering and Applied Science Nanjing University Nanjing P.R. China;

    Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing P.R. China;

    Eco-materials and Renewable Energy Research Center (ERERC) National Laboratory of Solid State Microstructures and Department of Physics Nanjing University Nanjing P.R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    photoelectrochemisty; solid-liquid interface; bulk heterojunction; charge separation efficiency; visualized evidence;

    机译:光电化学;固液界面;本体异质结;电荷分离效率;可视化证据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号