...
首页> 外文期刊>Advanced energy materials >Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination
【24h】

Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination

机译:通过三氯化锡终止增强了MXene碳化钛中的锂离子可及性

获取原文
获取原文并翻译 | 示例

摘要

Pseudocapacitance is a key charge storage mechanism to advanced electrochemical energy storage devices distinguished by the simultaneous achievement of high capacitance and a high charge/discharge rate by using surface redox chemistries. MXene, a family of layered compounds, is a pseudocapacitor-like electrode material which exhibits charge storage through exceptionally fast ion accessibility to redox sites. Here, the authors demonstrate steric chloride termination in MXene Ti2CTx (T-x: surface termination groups) to open the interlayer space between the individual 2D Ti2CTx units. The open interlayer space significantly enhances Li-ion accessibility, leading to high gravimetric and volumetric capacitances (300 F g(-1) and 130 F cm(-3)) with less diffusion limitation. A Li-ion hybrid capacitor consisting of the Ti2CTx negative electrode and the LiNi1/3Co1/3Mn1/3O2 positive electrode displays an unprecedented specific energy density of 160 W h kg(-1) at 220 W kg(-1) based on the total weight of positive and negative active materials.
机译:伪电容是高级电化学能量存储设备的关键电荷存储机制,其特征在于通过使用表面氧化还原化学物质同时实现高电容和高充电/放电速率。 MXene是一种层状化合物,是一种伪电容器状电极材料,通过极快的离子可接近氧化还原位点而表现出电荷存储。在这里,作者展示了MXene Ti2CTx(T-x:表面终止基团)中的空间氯化物封端,以打开各个2D Ti2CTx单元之间的层间空间。开放的层间空间显着增强了锂离子的可及性,从而导致了较高的重量和体积电容(300 F g(-1)和130 F cm(-3)),且扩散限制较小。由Ti2CTx负极和LiNi1 / 3Co1 / 3Mn1 / 3O2正极组成的锂离子混合电容器在总功率为220 W kg(-1)时显示出前所未有的160 W h kg(-1)的比能量密度正极和负极活性物质的重量。

著录项

  • 来源
    《Advanced energy materials 》 |2017年第9期| 1601873.1-1601873.8| 共8页
  • 作者单位

    Univ Tokyo, Dept Chem Syst Engn, Bukyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan;

    Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan|Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan;

    Univ Tokyo, Dept Chem Syst Engn, Bukyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan;

    Univ Tokyo, Dept Chem Syst Engn, Bukyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan;

    Okayama Univ, Grad Sch Nat Sci & Technol, 3-1-1 Tsushima Naka, Okayama 7008530, Japan|Kyoto Univ, ESICB, Nishikyo Ku, Kyoto 6158510, Japan;

    Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan|Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan|Kyoto Univ, ESICB, Nishikyo Ku, Kyoto 6158510, Japan|JST PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan;

    Natl Inst Mat Sci, Ctr Green Res Energy & Environm Mat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan|Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan|Kyoto Univ, ESICB, Nishikyo Ku, Kyoto 6158510, Japan;

    Univ Tokyo, Dept Chem Syst Engn, Bukyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan|Kyoto Univ, ESICB, Nishikyo Ku, Kyoto 6158510, Japan;

    Univ Tokyo, Dept Chem Syst Engn, Bukyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan|Kyoto Univ, ESICB, Nishikyo Ku, Kyoto 6158510, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号