首页> 外文期刊>Advanced energy materials >Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors
【24h】

Exploiting High-Performance Anode through Tuning the Character of Chemical Bonds for Li-Ion Batteries and Capacitors

机译:通过调整锂离子电池和电容器的化学键特性来开发高性能阳极

获取原文
获取原文并翻译 | 示例
           

摘要

A high-performance anode material, MnNCN, is synthesized through a facile and low-cost method. The relationship between electrochemical properties and chemical composition is explored on the scientific considerations that can provide an insight on designing expected materials. MnNCN with the long bonding length of 2.262 angstrom in Mn-N and weak electronegativity of 3.04 Pauling units in N leads to a lower charge/discharge potential than that of MnO owing to the character of chemical bonds transformed to covalent dominating from ionic dominating in MnO. Covalent character increases the ratio of sharing electrons that decreases the migration energy of electrons in electrochemical reaction, which enhances the reactive reversibility and stability of electrode material. MnNCN delivered a reversibly specific capacity of 385 mA h g(-1) at 5 A g(-1) in a Li-ion half cell. Besides, a Li-ion hybrid capacitor with a high voltage of 4 V presents energy and power densities of respective 103 Wh kg(-1) and 8533 W kg(-1) and cycles at 5 A g(-1) without detectable degradation after 5000 cycles.
机译:高性能阳极材料MnNCN是通过一种简便且低成本的方法合成的。电化学性质和化学成分之间的关​​系是根据科学的考虑进行探索的,这些考虑可以为设计预期的材料提供见解。 MnNCN在Mn-N中具有2.262埃的长键长,在N中具有3.04鲍林单元的弱电负性,比MnO具有更低的充电/放电电势,这是由于化学键具有从MnO中离子占主导地位的共价键转变为共价键的特性。 。共价特性增加了共享电子的比例,从而降低了电化学反应中电子的迁移能,从而增强了电极材料的反应可逆性和稳定性。 MnNCN在锂离子半电池中在5 A g(-1)时可逆比容量为385 mA h g(-1)。此外,具有4 V高压的锂离子混合电容器呈现的能量和功率密度分别为103 Wh kg(-1)和8533 W kg(-1),并且在5 A g(-1)下循环,没有可察觉的退化经过5000次循环。

著录项

  • 来源
    《Advanced energy materials》 |2017年第1期|1601127.1-1601127.9|共9页
  • 作者单位

    Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China;

    Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 100083, Peoples R China|Univ Washington, Dept Mat Sci & Engn, Seattle, WA 98195 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号