首页> 外文期刊>Advanced energy materials >Atomic Heterointerface Boosts the Catalytic Activity toward Oxygen Reduction/Evolution Reaction
【24h】

Atomic Heterointerface Boosts the Catalytic Activity toward Oxygen Reduction/Evolution Reaction

机译:原子异助°促进催化活性朝向氧还原/进化反应

获取原文
获取原文并翻译 | 示例
           

摘要

Interface engineering is an efficient strategy to enhance the electrocatalytic activity of hybrid materials by taking advantage of the synergistic effect of double or even multiple active sites. Here, the rational design of a Pd/NiO atomic interface with well patterned Pd arrays imbedded into NiO thin films are reported to boost the catalytic activity toward the oxygen reduction/evolution reaction. Theoretical analysis elucidates that the Pd (111)/NiO (111) interface with minimized lattice mismatch effectively adsorbs intermediates (OH*, LiO2*, Li2O2*, and Li2O*) and induces the growth/decomposition of electrochemical reaction products, which greatly lowers the Gibbs energy barrier of crucial steps and boosts the reaction kinetics. As expected, such hybrid thin films exhibit high catalytic activity for both the oxygen reduction reaction and oxygen evolution reaction, with performance comparable to the benchmarked Pt/C and RuO2 catalysts. Moreover, favorable performance is also achieved in both aqueous Zn-air batteries and aprotic Li-air batteries with an overpotential of only 0.69 and 0.50 V, respectively. This work suggests the great potential of such particularly morphological hybrid thin films in the development of high-performance catalysts for energy storage and conversion.
机译:界面工程是通过利用双甚至多个活性位点的协同效应来增强混合材料的电催化活性的有效策略。这里,据报道,掺入NiO薄膜的孔孔的PD / NIO原子界面的合理设计掺入​​NiO薄膜中以使催化活性升高到氧还原/进化反应。理论分析阐明了Pd(111)/ NiO(111)界面具有最小化的晶格错配有效吸附中间体(OH *,LiO 2 *,Li 2 O 2 *和Li2O *),并诱导电化学反应产物的生长/分解,这大大降低了关键步骤的GIBBS能量屏障并提高反应动力学。如预期的那样,这种杂化薄膜表现出氧还原反应和氧进化反应的高催化活性,其性能与基准的Pt / C和RuO2催化剂相当。此外,在Zn-空气电池水溶液和非体质的Li-Air电池中也可以分别实现有利的性能,分别具有0.69和0.50V的过电势。这项工作表明,在高性能催化剂的开发中进行了诸如能量储存和转化的高性能催化剂的巨大潜力。

著录项

  • 来源
    《Advanced energy materials》 |2021年第45期|2102235.1-2102235.10|共10页
  • 作者单位

    Sun Yat Sen Univ Sch Mat Gongchang Rd 66 Shenzhen 510187 Peoples R China|Leibniz IFW Dresden Inst Integrat Nanosci Helmholtzstr 20 D-01069 Dresden Germany|South China Univ Technol Guangdong Prov Key Lab Adv Energy Storage Mat Guangzhou 510641 Peoples R China|Key Lab Fuel Cell Technol Guangdong Prov Guangzhou 510641 Peoples R China;

    Sun Yat Sen Univ Sch Mat Gongchang Rd 66 Shenzhen 510187 Peoples R China;

    Leibniz IFW Dresden Inst Integrat Nanosci Helmholtzstr 20 D-01069 Dresden Germany|Jiangsu Univ Sch Mat Sci & Engn Zhenjiang 212013 Jiangsu Peoples R China;

    Sun Yat Sen Univ Sch Mat Gongchang Rd 66 Shenzhen 510187 Peoples R China;

    Chongqing Univ Coll Bioengn Chongqing 40044 Peoples R China;

    Soochow Univ Coll Energy Key Lab Adv Carbon Mat & Wearable Energy Technol Moye Rd 688 Suzhou 215006 Peoples R China;

    Leibniz IFW Dresden Inst Integrat Nanosci Helmholtzstr 20 D-01069 Dresden Germany|TU Chemnitz Mat Architectures & Integrat Nanomembranes Main Rosenbergstr 6 D-09126 Chemnitz Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    batteries; electrocatalysts; interfaces; ORR; OER; thin films;

    机译:电池;电催化剂;界面;ORR;oer;薄膜;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号