首页> 外文期刊>Advanced energy materials >Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO_2
【24h】

Adjusting the Coordination Environment of Mn Enhances Supercapacitor Performance of MnO_2

机译:调整Mn的协调环境提高了MnO_2的超级电容器性能

获取原文
获取原文并翻译 | 示例
           

摘要

The electrochemical properties of transition metal oxides strongly depend on the coordination environment of metal atoms. Nevertheless, the relationship between the coordination environment of metal atoms and electrochemical performance of metal oxides is unclear, while the strategy of adjusting the coordination environment of metal atoms is rare. Herein, the engineering of the coordination environment of Mn atoms in manganese dioxides (MnO2) by using a triethanolamine (TEA) complex-induced method is reported. The detailed experimental characterizations and density functional theory calculations show that the optimized Mn coordination environment with oxygen deficiency and more corner-shared Mn-Mn shells results in apparent electron dislocation and forms an effective built-in electrical field. As a result, the obtained MnO2-TEA sample exhibits a high conductivity and an excellent ion diffusion capacity, with a remarkable specific capacitance of 417.5 F g(-1) at 1 A g(-1). At the power density of 450.0 W kg(-1), the fabricated asymmetric supercapacitor delivers the maximal energy density (57.4 Wh kg(-1)). This work not only provides an effective strategy of adjusting the coordination environment of metal atoms in metal oxides, but also presents a deeper understanding of the electronic structure dependent electrochemical performance of electrode materials.
机译:过渡金属氧化物的电化学性能强烈取决于金属原子的配位环境。然而,金属原子的配位环境与金属氧化物电化学性能之间的关系尚不清楚,而调整金属原子的配位环境的策略是罕见的。这里,报道了通过使用三乙醇胺(MNO2)在二氧氧化物(MNO2)中Mn原子的配位环境的工程。详细的实验表征和密度泛函理论计算表明,具有缺氧和更多角落共享Mn-Mn壳的优化MN协调环境导致表观电子脱位,并形成有效的内置电场。结果,所获得的MnO 2茶样品表现出高导电率和优异的离子扩散能力,其具有117.5fg(-1)的显着比电容在1Ag(-1)。在450.0W kg(-1)的功率密度下,制造的不对称超级电容器可提供最大能量密度(57.4WHKG(-1))。这项工作不仅提供了在金属氧化物中调整金属原子的配位环境的有效策略,而且还提出了对电子结构依赖性电化学性能的更深层次的理解。

著录项

  • 来源
    《Advanced energy materials》 |2021年第32期|2101412.1-2101412.11|共11页
  • 作者单位

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

    Beijing Univ Chem Technol Beijing Adv Innovat Ctr Soft Matter Sci & Engn State Key Lab Organ Inorgan Composites Beijing 100029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    built-in electrical field; coordination environment; electron dislocation; MnO; (2); supercapacitors;

    机译:内置电气场;协调环境;电子脱位;MNO;(2);超级电容器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号