...
首页> 外文期刊>Advanced energy materials >Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions
【24h】

Engineering Single Atom Catalysts to Tune Properties for Electrochemical Reduction and Evolution Reactions

机译:工程单原子催化剂对电化学减少和演化反应进行调整性能

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Electrocatalysis is important to the conversion and storage of renewable energy resources, including fuel cells, water electrolysers, and batteries. Engineering metal-based nano-architectures and their atomic-scale surfaces is a promising approach for designing electrocatalysts. Single metal atom interactions with substrates and reaction environments crucially modulate the surface electronic properties of active metal centers, yielding controllable scaling relationships and transitions between different reaction mechanisms that improve catalytic activity. Single-atom catalysts (SACs) allow activity and selectivity tuning while maintaining relatively consistent morphologies. SACs have well-defined configurations and active centers within homogeneous single-atom dispersions, producing exceptional selectivities, activities, and stabilities. Furthermore, SACs with high per-atom utilization efficiencies, well-controlled substrate compositions, and engineered surface structures develop single atom active sites for molecular reactions, enhancing mass activities. Recent developments in different metal-based SAC nanostructures are discussed to explain their remarkable bi-functional electrocatalytic activities and high mechanical flexibility, especially in the oxygen evolution reaction, oxygen reduction reaction, carbon dioxide reduction reaction, hydrogen evolution reaction, and in battery applications. Existing barriers to and future insights into improving SAC performance are addressed. This study develops practical and fundamental insights on single atom electrocatalysts directed towards tuning their electrocatalytic activities and enhancing their stabilities.
机译:电催化对可再生能源的转化和储存是重要的,包括燃料电池,水电解放器和电池。工程基于金属的纳米架构及其原子鳞片表面是设计电催化剂的有希望的方法。与基材和反应环境的单金属原子相互作用至关重要地调节活性金属中心的表面电子性质,产生可控的缩放关系和改善催化活性的不同反应机制之间的转变。单原子催化剂(SACS)允许活性和选择性调节,同时保持相对一致的形态。 SACS在均匀的单原子分散体中具有明确定义的配置和活性中心,产生特殊的选择性,活动和稳定性。此外,具有高每原子利用效率,受控衬底组合物和工程表面结构的囊,用于分子反应的单个原子活性位点,增强质量活性。讨论了不同金属基囊纳米结构的最新发展,以解释其显着的双功能电催化活性和高机械柔韧性,特别是在氧气进化反应,氧还原反应,二氧化碳还原反应,氢化反应和电池应用中。解决了改善囊绩效的现有障碍和未来见解。本研究开发了针对调整其电催化活动并提高其稳定性的单一原子电催化剂的实际和基本的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号