首页> 外文期刊>Advanced energy materials >Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries
【24h】

Breaking Down the Crystallinity: The Path for Advanced Lithium Batteries

机译:分解结晶度:高级锂电池的路径

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-sulfur batteries offer high energy density, but their practical utility is plagued by the fast decay of lithium-metal anode upon cycling. To date, a fundamental understanding of the degradation mechanisms of lithium-metal anode is lacking. It is shown that (i) by employing a specifically designed electrolyte, the lithium-metal anode degradation can be significantly reduced, resulting in a superior, high-rate battery performance and (ii) by combining advanced, 3D chemical analysis with X-ray diffraction, the properties of the lithium-metal anode can be effectively monitored as a function of cycling, which is critical in understanding its degradation mechanisms. These findings suggest that the crystallinity of the impurity phases formed in the lithium-metal anode via chemical reactions with the electrolyte is the dominant degradation factor. It is shown both experimentally and by computational modeling that by employing electrolyte additives containing metal ions that have lower reactivity with sulfur than lithium (e.g., copper, silver, and gold), the crystallinity of the impurity phases can be significantly reduced, resulting in a stable lithium-metal anode. A pathway to develop a practical, affordable, environmentally compatible, rechargeable Li-S battery system is offered, and insights to develop other high-energy-density battery systems based on the high-capacity lithium-metal anode are provided.
机译:锂 - 硫磺电池提供高能量密度,但它们的实用效用在循环时通过锂金属阳极的快速衰减困扰。迄今为止,缺乏对锂金属阳极降解机制的根本理解。结果表明,通过采用专门设计的电解质,可以显着降低锂 - 金属阳极劣化,从而通过与X射线相结合的先进,3D化学分析产生优异的,高速电池性能和(ii)衍射,可以用循环的函数有效地监测锂金属阳极的性质,这对于了解其降解机制至关重要。这些发现表明,通过与电解质的化学反应在锂金属阳极中形成的杂质相的结晶度是显着的降解因子。通过实验和通过计算建模显示,通过使用含有与锂(例如铜,银和金)具有较低反应性的金属离子的电解质添加剂,可以显着降低杂质相的结晶度,从而产生a稳定的锂金属阳极。提供了一种开发实用,实惠,环境兼容的可充电LI-S电池系统的途径,并且提供了基于高容量锂金属阳极开发其他高能密度电池系统的见解。

著录项

  • 来源
    《Advanced energy materials》 |2016年第5期|1501933.1-1501933.9|共9页
  • 作者单位

    Univ Texas Austin Mat Sci & Engn Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst Austin TX 78712 USA;

    Univ Texas Austin Mat Sci & Engn Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst Austin TX 78712 USA;

    Univ Texas Austin Dept Chem Austin TX 78712 USA|Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA;

    Univ Texas Austin Dept Chem Austin TX 78712 USA|Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA;

    Univ Texas Austin Dept Chem Austin TX 78712 USA|Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA;

    Univ Texas Austin Mat Sci & Engn Program Austin TX 78712 USA|Univ Texas Austin Texas Mat Inst Austin TX 78712 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号