首页> 外文期刊>Advanced energy materials >Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries
【24h】

Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries

机译:导电和催化三相界面可实现高速率锂硫电池的均匀成核

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Rechargeable lithium-sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid-phase Li2S precipitates largely dominate the battery's performance. Herein, a triple-phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium-sulfur battery. The triple-phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g(-1) and a capacity retention of 459 mAh g(-1) after 500 cycles, and a stable operation of high sulfur loading electrode (2.69-4.35 mg cm(-2)). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.
机译:可充电锂硫电池由于其卓越的能量密度而引起了极大的科学关注。然而,硫电化学涉及多电子氧化还原反应和复杂的相变,而固相Li2S沉淀的最终形态在很大程度上决定了电池的性能。在本文中,提出了电解质/ CoSe2 / G之间的三相界面,以在工作的锂硫电池中提供强的化学吸附,高电导率和极佳的多硫化物氧化还原反应的电催化作用。三相界面有效地增强了可溶性多硫化锂的动力学行为,并调节了大电流密度下固态Li2S沉淀物的均匀成核和可控生长。因此,带有CoSe2 / G功能隔离器的电池在6.0 C时可提供超高倍率循环,初始容量为916 mAh g(-1),经过500次循环后容量保持为459 mAh g(-1),并且稳定高硫负载电极(2.69-4.35 mg cm(-2))的操作。这项工作为合理调节电化学氧化还原反应的界面上的能量化学开辟了新见解,并激发了基于多电子氧化还原反应的相关储能和转化系统的探索。

著录项

  • 来源
    《Advanced energy materials》 |2019年第1期|1802768.1-1802768.8|共8页
  • 作者单位

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

    Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China;

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

    Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China;

    Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrocatalysis; Li2S precipitate; lithium-sulfur batteries; polysulfide redox reaction; triple-phase interface;

    机译:电催化;Li2S沉淀;锂硫电池;多硫化物氧化还原反应;三相界面;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号