...
首页> 外文期刊>Advanced energy materials >Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries
【24h】

Conductive and Catalytic Triple-Phase Interfaces Enabling Uniform Nucleation in High-Rate Lithium–Sulfur Batteries

机译:导电和催化三相界面使高速锂 - 硫磺电池中的均匀成核

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Rechargeable lithium-sulfur batteries have attracted tremendous scientific attention owing to their superior energy density. However, the sulfur electrochemistry involves multielectron redox reactions and complicated phase transformations, while the final morphology of solid-phase Li2S precipitates largely dominate the battery's performance. Herein, a triple-phase interface among electrolyte/CoSe2/G is proposed to afford strong chemisorption, high electrical conductivity, and superb electrocatalysis of polysulfide redox reactions in a working lithium-sulfur battery. The triple-phase interface effectively enhances the kinetic behaviors of soluble lithium polysulfides and regulates the uniform nucleation and controllable growth of solid Li2S precipitates at large current density. Therefore, the cell with the CoSe2/G functional separator delivers an ultrahigh rate cycle at 6.0 C with an initial capacity of 916 mAh g(-1) and a capacity retention of 459 mAh g(-1) after 500 cycles, and a stable operation of high sulfur loading electrode (2.69-4.35 mg cm(-2)). This work opens up a new insight into the energy chemistry at interfaces to rationally regulate the electrochemical redox reactions, and also inspires the exploration of related energy storage and conversion systems based on multielectron redox reactions.
机译:由于能量密度卓越,可充电锂硫电池引起了巨大的科学关注。然而,硫电化学涉及多电体氧化还原反应和复杂的相变,而固相Li 2 S的最终形态沉淀在很大程度上以电池的性能支配。在此,提出了电解质/ COSE2 / g之间的三相界面,得到了在加工锂 - 硫电池中的多硫化物氧化还原反应的强大化学吸取,高导电性和极好的电催化。三相界面有效地增强了可溶性锂多硫化物的动力学行为,并调节固体Li 2 S以大电流密度沉淀的均匀成核和可控增长。因此,具有COSE2 / G功能分离器的电池在6.0℃下以916mAhg(-1)的初始容量为6.0℃提供超高率循环,并且在500次循环后的459mAhg(-1)的容量保持的容量保持高硫加载电极的操作(2.69-4.35mg cm(-2))。这项工作开辟了对界面中能源化学的新洞察力,以合理调节电化学氧化还原反应,并激发了基于多电体氧化还原反应的相关能量储存和转化系统的探索。

著录项

  • 来源
    《Advanced energy materials》 |2019年第1期|1802768.1-1802768.8|共8页
  • 作者单位

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

    Beijing Inst Technol Adv Res Inst Multidisciplinary Sci Beijing 100081 Peoples R China;

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

    Beijing Inst Technol Adv Res Inst Multidisciplinary Sci Beijing 100081 Peoples R China;

    Tsinghua Univ Dept Chem Engn Beijing Key Lab Green Chem React Engn & Technol Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    electrocatalysis; Li2S precipitate; lithium-sulfur batteries; polysulfide redox reaction; triple-phase interface;

    机译:电殖分析;Li2S沉淀;锂 - 硫磺电池;多相界面多相界面;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号