首页> 外文期刊>Advanced energy materials >Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating
【24h】

Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating

机译:原始的还是高度缺陷的?了解石墨烯结构对稳定锂金属电镀的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The role of graphene host structure/chemistry in plating-stripping in lithium metal anodes employed for lithium metal batteries is first examined in this study. Structural and chemical defects are bad, since highly defective graphene promotes unstable solid electrolyte interphase (SEI) growth. This consumes the fluoroethylene carbonate (FEC) additive in the carbonate electrolyte and is correlated with rapid decay in Coulombic efficiency (CE) and formation of filament-like Li dendrites. A unique flow-aided sonication exfoliation method is employed to synthesize "defect-free" graphene (df-G), allowing for a direct performance comparison with conventional reduced graphene oxide (r-GO). At cycle 1, the r-GO is better electrochemically wetted by Li than df-G, indicating that initially it is more lithiophilic. With cycling, the nucleation overpotential with r-GO becomes higher than with df-G, indicating less facile plating reactions. The df-G yields state-of-the-art electrochemical performance, with the post cycled metal surface being relatively smooth and dendrite-free. Conversely, r-GO templates have CE rapidly degrade from the onset, with extensive dendrites after cycling. Severe SEI growth and associated FEC depletion with r-GO are further confirmed by electrochemical impedance analysis and surface science methods. A new design rule is provided for Li metal templates: An ideal host must be noncatalytic toward SEI formation.
机译:在这项研究中,首先研究了石墨烯主体结构/化学在用于锂金属电池的锂金属阳极中进行电镀剥落的作用。结构和化学缺陷很严重,因为高度缺陷的石墨烯会促进不稳定的固体电解质中间相(SEI)的生长。这消耗了碳酸盐电解质中的碳酸氟代亚乙酯(FEC)添加剂,并且与库仑效率(CE)的快速衰减和丝状Li树枝状晶体的形成相关。采用独特的流辅助超声处理剥落方法来合成“无缺陷”石墨烯(df-G),从而可以与传统的还原石墨烯氧化物(r-GO)进行直接性能比较。在循环1时,r-GO在电化学上比df-G更好地被Li润湿,这表明最初它更亲脂。通过循环,r-GO的成核超电势高于df-G,表明较不容易的电镀反应。 df-G具有最先进的电化学性能,循环后的金属表面相对光滑且无枝晶。相反,r-GO模板具有从一开始就迅速降解的CE,并在循环后出现大量树突。电化学阻抗分析和表面科学方法进一步证实了SEI的严重生长和相关的FEC耗尽。为Li金属模板提供了新的设计规则:理想的主体必须对SEI的形成没有催化作用。

著录项

  • 来源
    《Advanced energy materials》 |2019年第3期|1802918.1-1802918.12|共12页
  • 作者单位

    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China;

    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China;

    Sichuan Univ, Coll Mat Sci & Technol, Chengdu 610065, Sichuan, Peoples R China;

    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China;

    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China;

    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China|Sichuan Univ, Coll Mat Sci & Technol, Chengdu 610065, Sichuan, Peoples R China;

    Clarkson Univ, Chem & Biomol Engn & Mech Engn, Potsdam, NY 13699 USA;

    Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Sichuan, Peoples R China|Clarkson Univ, Chem & Biomol Engn & Mech Engn, Potsdam, NY 13699 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    liquid phase exfoliation (LPE); mossy dendrites; sodium metal batteries (SMB); solid electrolyte interfaces (SEI);

    机译:液相剥落(LPE);苔藓状树枝状结晶;钠金属电池(SMB);固体电解质界面(SEI);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号