首页> 外文期刊>ACM Transactions on Computational Theory >A Note on the Complexity of Comparing Succinctly Represented Integers, with an Application to Maximum Probability Parsing
【24h】

A Note on the Complexity of Comparing Succinctly Represented Integers, with an Application to Maximum Probability Parsing

机译:关于比较简洁表示的整数的复杂性及其在最大概率分析中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The following two decision problems capture the complexity of comparing integers or rationals that are succinctly represented in product-of-exponentials notation, or equivalently, via arithmetic circuits using only multiplication and division gates, and integer inputs. Input instance: Four lists of positive integers: a_1,...,a_n ∈N_+~n; b_1,...,b_n ∈N_+~n; c_1,...,c_m ∈N_+~m; d_1,...,d_m ∈N_+~m; where each of the integers is represented in binary. Problem 1 (equality testing): Decide whether a_1~(b1)a_2~(b2)…a_n~(bn)=c_1~(d1)c_2~(d2)…c_m~(dm). Problem 2 (inequality testing): Decide whether a_1~(b1)a_2~(b2)…a_n~(bn)≥c_1~(d1)c_2~(d2)…c_m~(dm). Problem 1 is easily decidable in polynomial time using a simple iterative algorithm. Problem 2 is much harder. We observe that the complexity of Problem 2 is intimately connected to deep conjectures and results in number theory. In particular, if a refined form of the ABC conjecture formulated by Baker in 1998 holds, or if the older Lang-Waldschmidt conjecture (formulated in 1978) on linear forms in logarithms holds, then Problem 2 is decidable in P-time (in the Standard Turing model of computation). Moreover, it follows from the best available quantitative bounds on linear forms in logarithms, namely, by Baker and Wuestholz [1993] or Matveev [2000], that if m and n are fixed universal constants then Problem 2 is decidable in P-time (without relying on any conjectures). This latter fact was observed earlier by Shub [1993]. We describe one application: P-time maximum probability parsing for arbitrary stochastic context-free grammars (where ∈-rules are allowed).
机译:以下两个决策问题说明了比较整数或有理数的比较复杂性,这些整数或有理数以指数乘积表示法表示,或者等效地,通过仅使用乘法和除法门以及整数输入的算术电路进行比较。输入实例:四组正整数:a_1,...,a_n∈N_+〜n; b_1,...,b_n∈N_+〜n; c_1,...,c_m∈N_+〜m; d_1,...,d_m∈N_+〜m;其中每个整数都用二进制表示。问题1(相等性测试):确定a_1〜(b1)a_2〜(b2)... a_n〜(bn)= c_1〜(d1)c_2〜(d2)... c_m〜(dm)。问题2(不等式测试):确定a_1〜(b1)a_2〜(b2)... a_n〜(bn)≥c_1〜(d1)c_2〜(d2)... c_m〜(dm)。使用简单的迭代算法可以轻松地在多项式时间内确定问题1。问题2困难得多。我们观察到问题2的复杂性与深层猜想密切相关,并导致了数论的发展。特别是,如果贝克在1998年提出的ABC猜想的改进形式成立,或者如果旧的Lang-Waldschmidt猜想(于1978年制定)对数线性形式成立,那么问题2可以在P时间内确定(在计算的标准图灵模型)。此外,它是根据对数上线性形式的最佳可用定量界得出的,即Baker和Wuestholz [1993]或Matveev [2000],如果m和n是固定的通用常数,则问题2在P时间内是可确定的(无需依赖任何猜想)。 Shub [1993]较早地观察到了后者的事实。我们描述了一种应用:任意随机随机上下文无关文法(其中允许ε规则)的P时间最大概率解析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号