首页> 外文期刊>ACM transactions on Asian and low-resource language information processing >Structurally Comparative Hinge Loss for Dependency-Based Neural Text Representation
【24h】

Structurally Comparative Hinge Loss for Dependency-Based Neural Text Representation

机译:基于依赖性的神经文本表示的结构上比较铰链损失

获取原文
获取原文并翻译 | 示例
       

摘要

Dependency-based graph convolutional networks (DepGCNs) are proven helpful for text representation to handle many natural language tasks. Almost all previous models are trained with cross-entropy (CE) loss, which maximizes the posterior likelihood directly. However, the contribution of dependency structures is not well considered by CE loss. As a result, the performance improvement gained by using the structure information can be narrow due to the failure in learning to rely on this structure information. To face the challenge, we propose the novel structurally comparative hinge (SCH) loss function for DepGCNs. SCH loss aims at enlarging the margin gained by structural representations over non-structural ones. From the perspective of information theory, this is equivalent to improving the conditional mutual information of model decision and structure information given text. Our experimental results on both English and Chinese datasets show that by substituting SCH loss for CE loss on various tasks, for both induced structures and structures from an external parser, performance is improved without additional learnable parameters. Furthermore, the extent to which certain types of examples rely on the dependency structure can be measured directly by the learned margin, which results in better interpretability. In addition, through detailed analysis, we show that this structure margin has a positive correlation with task performance and structure induction of DepGCNs, and SCH loss can help model focus more on the shortest dependency path between entities. We achieve the new state-of-the-art results on TACRED, IMDB, and Zh. Literature datasets, even compared with ensemble and BERT baselines.
机译:基于依赖性的图形卷积网络(DEPG​​CNS)有助于文本表示来处理许多自然语言任务。几乎所有以前的模型都接受过跨熵(CE)损失的培训,直接最大化后似的似然。但是,CE损失的依赖结构的贡献不受欢迎。结果,由于学习依赖于该结构信息,使用结构信息获得的性能改善可能是狭窄的。面对挑战,我们提出了用于DEPGCN的新型结构上对比铰链(SCH)损耗功能。 SCH损失旨在扩大由非结构性的结构陈述获得的边缘。从信息理论的角度来看,这相当于提高模型决策和结构信息的条件互信息。我们对英文和中文数据集的实验结果表明,通过代替各种任务的CE损失,对于来自外部解析器的诱导结构和结构,可以在没有额外的学习参数的情况下提高性能。此外,可以通过学习的余量直接测量依赖于依赖结构的某些类型的示例的程度,这导致更好的解释性。此外,通过详细的分析,我们表明,该结构边缘与DepGCNS的任务性能和结构诱导具有正相关性,并且SCH丢失可以帮助模型更多地关注实体之间的最短依赖路径。我们在TaRed,IMDB和Zh上实现了新的最先进结果。与集合和BERT基线相比,文献数据集。

著录项

  • 来源
  • 作者单位

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

    Chinese Acad Sci Natl Lab Pattern Recognit Inst Automat Beijing 100049 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China|Intelligence Bldg 95 Zhongguancun East Rd Beijing 100190 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Text representation; graph convolutional networks; loss function;

    机译:文本表示;图卷积网络;损失功能;
  • 入库时间 2022-08-18 21:31:04

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号