...
首页> 外文期刊>ACI Structural Journal >Shear Strength Enhancement Mechanisms of Steel Fiber-Reinforced Concrete Slender Beams
【24h】

Shear Strength Enhancement Mechanisms of Steel Fiber-Reinforced Concrete Slender Beams

机译:钢纤维混凝土细长梁的抗剪强度增强机理

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An experimental study was conducted to identify the shear-enhance-ment and failure mechanisms behind the ultimate shear strength of steel fiber-reinforced concrete (SFRC) slender beams by using the full field-deformation-measuring capability of digital image correlation (DIC) technology. A total ,of 12 large-scale simply supported SFRC and RC beams with an overall height from 12 to 48 in. (305 to 1220 mm) were tested under monotonic point load up to failure. The greater shear strength in SFRC beams originates from the ability of the fiber bridging effect that delays the propagation of the cracks into the compression zone, whose shear strength is enhanced by the compressive stresses induced by the higher load. The slow progression of the cracks keeps the compression zone depth large, thereby enabling it to contribute to a higher shear resistance. In contrast with the traditional assumption for either plain concrete or SFRC beams, where the shear contribution resulting from dowel action is completely neglected, this research clearly shows that the dowel action has an appreciable effect on the ultimate shear strength. Its contribution varies from 10 to 30% when the beam depth increases from 12 to 48 in. (305 to 1220 mm). On the other hand, the compression zone's contribution decreases from 69 to 36% with the increase in beam depth. In addition, the shear contribution from the fiber bridging effect along the critical shear crack stays approximately unchanged at 20%, irrespective of the beam depth. In this study, the minimum shear strength obtained was in the range of 5√f_c' psi (0.42√f_c' MPa) for the beams with the greatest depth. This indicates that the maximum allowed shear stress limit of 1.5√f_c' psi (0.125√f_c' MPa) specified in ACI 318-14 is on the very conservative side.
机译:通过使用数字图像相关技术(DIC)的全场变形测量能力,进行了一项实验研究,以识别钢纤维增强混凝土(SFRC)细长梁的极限抗剪强度背后的抗剪增强和破坏机理。 。在单调点载荷直至破坏的情况下,总共测试了12条大型整体支撑的SFRC和RC梁,总高度为12至48英寸(305至1220 mm)。 SFRC梁的较大抗剪强度源于纤维桥接效应的能力,这种能力会延迟裂纹向压缩区的传播,而较高的载荷所引起的压缩应力会增强其抗剪强度。裂纹的缓慢发展使压缩区深度保持较大,从而使压缩区有助于提高抗剪强度。与传统的普通混凝土或SFRC梁假设相反,传统的假设完全忽略了销钉作用引起的剪切作用,这项研究清楚地表明,销钉作用对极限抗剪强度有显着影响。当光束深度从12英寸增加到48英寸(305到1220毫米)时,其贡献从10%到30%不等。另一方面,随着射束深度的增加,压缩区的贡献从69%降低到36%。此外,不管束深如何,沿临界剪切裂纹的纤维桥接效应所产生的剪切贡献几乎保持不变,为20%。在这项研究中,对于最大深度的梁,获得的最小抗剪强度在5√f_c'psi(0.42√f_c'MPa)的范围内。这表明ACI 318-14中规定的最大允许剪应力极限1.5√f_c'psi(0.125√f_c'MPa)处于非常保守的一面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号