...
首页> 外文期刊>Accounts of Chemical Research >The Molecular Interactions That Stabilize RNA Tertiary Structure: RNA Motifs, Patterns, and Networks
【24h】

The Molecular Interactions That Stabilize RNA Tertiary Structure: RNA Motifs, Patterns, and Networks

机译:稳定RNA三级结构的分子相互作用:RNA母题,模式和网络。

获取原文
获取原文并翻译 | 示例
           

摘要

RNA molecules adopt specific three-dimensional structures critical to their function. Many essential metabolic processes, including protein synthesis and RNA splicing, are carried out by RNA molecules with elaborate tertiary structures (e.g. 3QIQ, right). Indeed, the ribosome and self-splicing introns are complex RNA machines. But even the coding regions in messenger RNAs and viral RNAs are flanked by highly structured untranslated regions, which provide regulatory information necessary for gene expression.RNA tertiary structure is defined as the three-dimensional arrangement of RNA building blocks, which include helical duplexes, triple-stranded structures, and other components that are held together through connections collectively termed RNA tertiary interactions. The structural diversity of these interactions is now a subject of intense investigation, involving the techniques of NMR, X-ray crystallography, chemical genetics, and phylogenetic analysis. At the same time, many investigators are using biophysical techniques to elucidate the driving forces for tertiary structure formation and the mechanisms for its stabilization. RNA tertiary folding is promoted by maximization of base stacking, much like the hydrophobic effect that drives protein folding. RNA folding also requires electrostatic stabilization, both through charge screening and site binding of metals, and it is enhanced by desolvation of the phosphate backbone. In this Account, we provide an overview of the features that specify and stabilize RNA tertiary structure.A major determinant for overall tertiary RNA architecture is local conformation in secondary-structure junctions, which are regions from which two or more duplexes project. At junctions and other structures, such as pseudoknots and kissing loops, adjacent helices stack on one another, and these coaxial stacks play a major role in dictating the overall architectural form of an RNA molecule. In addition to RNA junction topology, a second determinant for RNA tertiary structure is the formation of sequence-specific interactions. Networks of triple helices, tetraloop–receptor interactions, and other sequence-specific contacts establish the framework for the overall tertiary fold. The third determinant of tertiary structure is the formation of stabilizing stacking and backbone interactions, and many are not sequence specific. For example, ribose zippers allow 2'-hydroxyl groups on different RNA strands to form networks of interdigitated hydrogen bonds, serving to seal strands together and thereby stabilize adjacent substructures. These motifs often require monovalent and divalent cations, which can interact diffusely or through chelation to specific RNA functional groups.As we learn more about the components of RNA tertiary structure, we will be able to predict the structures of RNA molecules from their sequences, thereby obtaining key information about biological function. Understanding and predicting RNA structure is particularly important given the recent discovery that although most of our genome is transcribed into RNA molecules, few of them have a known function. The prevalence of RNA viruses and pathogens with RNA genomes makes RNA drug discovery an active area of research. Finally, knowledge of RNA structure will facilitate the engineering of supramolecular RNA structures, which can be used as nanomechanical components for new materials. But all of this promise depends on a better understanding of the RNA parts list, and how the pieces fit together.
机译:RNA分子采用对其功能至关重要的特定三维结构。许多重要的代谢过程,包括蛋白质合成和RNA剪接,都是由具有复杂三级结构的RNA分子完成的(例如3QIQ,右图)。确实,核糖体和自我剪接的内含子是复杂的RNA机器。但是,即使信使RNA和病毒RNA中的编码区也位于高度结构化的非翻译区的两侧,它们提供了基因表达所需的调控信息.RNA三级结构被定义为RNA结构单元的三维排列,包括螺旋双链体,三链体链结构和通过连接保持在一起的其他组件统称为RNA三级相互作用。这些相互作用的结构多样性现在已成为研究的热点,涉及NMR,X射线晶体学,化学遗传学和系统发育分析技术。同时,许多研究人员正在使用生物物理技术来阐明三级结构形成的驱动力及其稳定机制。碱基堆积的最大化促进了RNA的三级折叠,这很像驱动蛋白质折叠的疏水作用。 RNA折叠还需要通过电荷筛选和金属位点结合来实现静电稳定,并且通过磷酸主链的去溶剂化作用来增强RNA折叠。在此帐户中,我们提供了指定和稳定RNA三级结构的功能的概述。总体三级RNA结构的主要决定因素是二级结构连接处的局部构象,二级结构连接处是两个或多个双链体从中突出的区域。在连接点和其他结构(例如假结和亲吻环)上,相邻的螺旋相互堆叠,这些同轴的堆叠在决定RNA分子的整体结构形式方面起着重要作用。除了RNA连接拓扑外,RNA三级结构的第二个决定因素是序列特异性相互作用的形成。三重螺旋,四环-受体相互作用和其他特定序列的接触网络为整个三级折叠建立了框架。三级结构的第三个决定因素是稳定堆积和骨架相互作用的形成,许多不是序列特异性的。例如,核糖拉链允许不同RNA链上的2'-羟基形成相互交叉的氢键网络,从而将链密封在一起,从而稳定相邻的亚结构。这些基序通常需要一价和二价阳离子,它们可以扩散或通过螯合作用与特定的RNA官能团相互作用。随着我们对RNA三级结构的组成了解得更多,我们将能够从其序列预测RNA分子的结构,从而获取有关生物学功能的关键信息。鉴于最近的发现,即尽管我们的大多数基因组都被转录成RNA分子,但很少有已知功能,因此了解和预测RNA结构尤为重要。 RNA病毒和病原体与RNA基因组的流行使RNA药物发现成为研究的活跃领域。最后,对RNA结构的了解将有助于超分子RNA结构的工程化,可以将其用作新材料的纳米机械成分。但是,所有这些希望都取决于对RNA零件清单以及零件如何装配在一起的更好理解。

著录项

  • 来源
    《Accounts of Chemical Research》 |2011年第12期|p.1302-1311|共10页
  • 作者单位

    Department of Biochemistry, University of Wisconsin—Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号