首页> 外文期刊>Accounts of Chemical Research >Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery
【24h】

Self-Assembled Multicompartment Liquid Crystalline Lipid Carriers for Protein, Peptide, and Nucleic Acid Drug Delivery

机译:自组装的多隔室液晶脂质载体,用于蛋白质,肽和核酸药物的递送

获取原文
获取原文并翻译 | 示例
           

摘要

Lipids and lipopolymers self-assembled into biocompatible nano- and mesostructured functional materials offer many potential applications in medicine and diagnostics. In this Account, we demonstrate how high-resolution structural investigations of bicontinuous cubic templates made from lyotropic thermosensitive liquid-crystalline (LC) materials have initiated the development of innovative lipidopolymeric self-assembled nanocarriers. Such structures have tunable nanochannel sizes, morphologies, and hierarchical inner organizations and provide potential vehicles for the predictable loading and release of therapeutic proteins, peptides, or nucleic acids. This Account shows that structural studies of swelling of bicontinuous cubic lipid/water phases are essential for overcoming the nanoscale constraints for encapsulation of large therapeutic molecules in multicompartment lipid carriers.For the systems described here, we have employed time-resolved small-angle X-ray scattering (SAXS) and high-resolution freeze-fracture electronic microscopy (FF-EM) to study the morphology and the dynamic topological transitions of these nanostructured multicomponent amphiphilic assemblies. Quasi-elastic light scattering and circular dichroism spectroscopy can provide additional information at the nanoscale about the behavior of lipid/protein self-assemblies under conditions that approximate physiological hydration.We wanted to generalize these findings to control the stability and the hydration of the water nanochannels in liquid-crystalline lipid nanovehicles and confine therapeutic biomolecules within these structures. Therefore we analyzed the influence of amphiphilic and soluble additives (e.g. poly(ethylene glycol)monooleate (MO-PEG), octyl glucoside (OG), proteins) on the nanochannels’ size in a diamond (D)-type bicontinuous cubic phase of the lipid glycerol monooleate (MO). At body temperature, we can stabilize long-living swollen states, corresponding to a diamond cubic phase with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network.With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.
机译:自组装成生物相容性纳米结构和介观结构的功能材料的脂质和脂聚合物在医学和诊断学中具有许多潜在的应用。在此帐户中,我们演示了由溶致热敏液晶(LC)材料制成的双连续立方模板的高分辨率结构研究如何启动了创新型脂聚合物自组装纳米载体的开发。此类结构具有可调的纳米通道大小,形态和层次化的内部组织,并为治疗性蛋白,肽或核酸的可预测装载和释放提供了潜在的载体。该研究表明,双连续立方脂质/水相溶胀的结构研究对于克服将纳米级治疗性分子封装在多室脂质载体中的纳米尺度约束至关重要。对于此处所述的系统,我们采用了时间分辨的小角度X-射线散射(SAXS)和高分辨率冷冻断裂电子显微镜(FF-EM)来研究这些纳米结构多组分两亲组件的形态和动态拓扑转变。准弹性光散射和圆二色性光谱学可以在纳米尺度上提供有关在近似生理水合的条件下脂质/蛋白质自组装行为的更多信息。我们想归纳这些发现,以控制水纳米通道的稳定性和水合液晶脂质纳米载体中的“分子”并在这些结构内限制了治疗性生物分子。因此,我们分析了两亲和可溶性添加剂(例如聚乙二醇单油酸酯(MO-PEG),辛基葡萄糖苷(OG),蛋白质)对金刚石(D)型双连续立方相中纳米通道尺寸的影响。脂质甘油单油酸酯(MO)。在体温下,我们可以稳定长寿的溶胀状态,这与具有较大水通道的钻石立方相相对应。时间分辨X射线衍射(XRD)扫描使我们能够检测到亚稳态的中间结构和共存结构,并监测温度诱导的包含甘油单油酸酯,可溶性蛋白大分子和界面曲率调节剂的混合系统的相序。这些观察到的状态对应于纳米流体通道网络的生长阶段。随着热刺激的应用,该系统逐渐变得更有序成为由双连续脂质膜形成的双金刚石立方晶格。高分辨率冷冻断裂电子显微镜表明,纳米域是通过将蛋白质包含到超分子立方组装体的纳米袋中而诱导的。这些结果有助于了解在刺激触发的LC相变过程中功能化的自组装脂质纳米系统的结构和动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号