首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage
【2h】

Earth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage

机译:耦合到ZnO纳米线阵列上的地球丰富的氧气析出催化剂可进行有效的光电化学水裂解

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The length and diameter of bare ZnO nanowires were optimized by varying the growth time and precursor concentration to achieve optimal photoelectrochemical performance. The addition of earth-abundant cobalt phosphate (Co-Pi) and nickel borate (Ni-B) oxygen evolution catalysts onto ZnO nanowires resulted in substantial cathodic shifts in onset potential to as low as about 0.3 V versus the reversible hydrogen electrode (RHE) for Ni-B/ZnO, for which a maximum photocurrent density of 1.1 mA cm−2 at 0.9 V (vs. RHE) with applied bias photon-to-current efficiency of 0.4 % and an unprecedented near-unity incident photon-to-current efficiency at 370 nm. In addition the potential required for saturated photocurrent was dramatically reduced from 1.6 to 0.9 V versus RHE. Furthermore, the stability of these ZnO nanowires was significantly enhanced by using Ni-B compared to Co-Pi due to its superior chemical robustness, and it thus has additional functionality as a stable protecting layer on the ZnO surface. These remarkable enhancements in both photocatalytic activity and stability directly address the current severe limitations in the use of ZnO-based photoelectrodes for water-splitting applications, and can be applied to other photoanodes for efficient solar-driven fuel synthesis.
机译:ZnO一直被认为是用于光电化学水分解的模型UV驱动的光阳极,但其性能受到快速的载流子重组,水溶液中极差的稳定性以及缓慢的水氧化动力学的限制。通过应用优化和钝化水热生长的一维ZnO纳米线阵列的策略解决了这些问题。通过改变生长时间和前驱物浓度来优化裸露的ZnO纳米线的长度和直径,以实现最佳的光电化学性能。与可逆氢电极(RHE)相比,在ZnO纳米线上添加了富含稀土的磷酸钴(Co-Pi)和硼酸镍(Ni-B)析氧催化剂导致起始电位发生显着的阴极移位,低至约0.3V。 Ni-B / ZnO,在0.9 V(vs. RHE)下最大光电流密度为1.1 mA cm −2 ,施加的偏置光子电流效率为0.4%,空前接近-370 nm处的入射光子电流效率。此外,与RHE相比,饱和光电流所需的电势从1.6 V大幅降低至0.9V。此外,由于其优异的化学稳定性,与Co-Pi相比,使用Ni-B可以显着提高这些ZnO纳米线的稳定性,因此,它具有作为ZnO表面稳定保护层的附加功能。光催化活性和稳定性的这些显着增强直接解决了将ZnO基光电极用于水分解应用中的当前严重局限性,并且可以应用于其他光阳极以进行有效的太阳能驱动燃料合成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号