首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Surface current balance and thermoelectric whistler wings at airless astrophysical bodies: Cassini at Rhea
【2h】

Surface current balance and thermoelectric whistler wings at airless astrophysical bodies: Cassini at Rhea

机译:无气天体天体上的表面电流平衡和热电吹哨机翼:Rhea的Cassini

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sharp magnetic perturbations found by the Cassini spacecraft at the edge of the Rhea flux tube are consistent with field-aligned flux tube currents. The current system results from the difference of ion and electron gyroradii and the requirement to balance currents on the sharp Rhea surface. Differential-type hybrid codes that solve for ion velocity and magnetic field have an intrinsic difficulty modeling the plasma absorber's sharp surface. We overcome this problem by instead using integral equations to solve for ion and electron currents and obtain agreement with the magnetic perturbations at Rhea's flux tube edge. An analysis of the plasma dispersion relations and Cassini data reveals that field-guided whistler waves initiated by (1) the electron velocity anisotropy in the flux tube and (2) interaction with surface sheath electrostatic waves on topographic scales may facilitate propagation of the current system to large distances from Rhea. Current systems like those at Rhea should occur generally, for plasma absorbers of any size such as spacecraft or planetary bodies, in a wide range of space plasma environments. Motion through the plasma is not essential since the current system is thermodynamic in origin, excited by heat flow into the object. The requirements are a difference of ion and electron gyroradii and a sharp surface, i.e., without a significant thick atmosphere.Key Points class="unordered" style="list-style-type:disc">Surface current balance condition yields a current system at astronomical bodiesCurrent system possible for sharp (airless) objects of any sizeCurrent system is thermoelectric and motion through the plasma nonessential
机译:卡西尼号航天器在Rhea磁通管的边缘发现了尖锐的磁扰动,这与磁场对准的磁通管电流一致。电流系统的产生是由于离子和电子回旋半径的不同以及要求在锐利的Rhea表面上平衡电流的要求。解决离子速度和磁场的差分类型混合代码在建模等离子吸收器的尖锐表面方面存在固有的困难。我们通过使用积分方程来解决离子和电子电流并与Rhea磁通管边缘的磁扰动达成一致,从而克服了这个问题。对等离子体弥散关系和卡西尼数据的分析表明,由(1)通量管中的电子速度各向异性和(2)在形貌尺度上与表面鞘层静电波的相互作用引发的场引导的惠斯勒波可以促进当前系统的传播距Rhea较远。对于各种规模的等离子吸收器(例如航天器或行星体),在广泛的空间等离子环境中,应普遍使用诸如Rhea的当前系统。通过等离子体的运动不是必需的,因为当前系统的起源是热力学的,受热流入物体的激发。要求是离子和电子回旋半径以及锋利的表面(即没有明显的浓厚气氛)之间的差异。要点 class =“ unordered” style =“ list-style-type:disc”> <!-list- behavior = unordered prefix-word = mark-type = disc max-label-size = 0-> 表面当前平衡条件会在天文物体上产生当前系统 当前系统可能会变得锋利(无气) )任何大小的物体 电流系统是热电的,并且通过等离子体非必需运动

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号