首页> 外文学位 >The Dynamics of Near-Surface Dust on Airless Bodies.
【24h】

The Dynamics of Near-Surface Dust on Airless Bodies.

机译:无气物体上近表面尘埃的动力学。

获取原文
获取原文并翻译 | 示例

摘要

The behavior of dust particles under the influence of electrostatic forces has been investigated near the surface of asteroids and the Moon. Dust particle motion on airless bodies has important implications for our understanding of the evolution of these bodies as well as the design of future exploration vehicles. Electrostatically-dominated dust motion has been hypothesized to cause the observed Lunar Horizon Glow and dust ponds on the asteroid Eros.;The first major contribution of this thesis is the identification of the electric field strength required in order to electrostatically loft dust particles off the surface of the Moon and asteroids Eros and Itokawa, taking into account the gravity of the body (assumed to be spherical) and the cohesion between dust grains (assumed to have the material properties of lunar regolith). In order to solve for the electric field strength required as a function of dust particle size (assumed to be spherical), we assumed that the charge on the dust particle was given by Gauss' law. It can be seen that it is easiest to launch intermediate-sized particles, rather than the submicron-micron sized particles that have been previously considered due to the dominance of cohesion for small particle sizes. Additionally, the electric field strength required to loft particles is orders of magnitude larger than is likely to be present in situ, unless grain charging is amplified beyond the levels predicted by Gauss' law.;The significance of cohesion in electrostatic dust lofting has also been demonstrated experimentally. Piles of uniformly sized dust grains are placed on a biased conducting plate in a plasma. We see that the pile of 15 micron dust spreads more than piles of 5, 10, 20, and 25 micron dust grains. This observation confirms our theory-based prediction of the importance of cohesion for small grain sizes. The experimental proof presented also has implications for interpretations of horizon glow observations and studies of electrostatic dust lofting feasibility.;The dynamics of dust particles moving in the plasma sheath, independent of the launching mechanism, is of interest since dust particle levitation could significantly change our understanding of the evolution of asteroids as well as pose a hazard to future exploration vehicles. By studying the levitation behavior in a 1D system for a range of particle sizes, a range of central body masses and three different plasma sheath models, we have gained a more detailed understanding of the drivers of the dynamics of the particles. The equilibria about which dust particles are expected to levitate are identified. The equilibria can be generalized to non-spherical grains (as actual lunar and asteroidal grains are highly angular) by presenting the results as a function of the particle's charge-to-weight ratio. Notably, we see that the behavior of levitating dust is driven by the particle size rather than the mass of the central body. Additionally, we can begin to constrain the range of initial launching conditions that result in levitation.;Finally, we expand our 1D analysis of dust levitation to a 3D system. Due to the rotation of the central body (particularly with fast rotating asteroids), the plasma environment will be changing radically through a particle's trajectory. Additionally, asteroids have highly non-spherical shapes, thus variations in the body's gravity may significantly influence the trajectory of a given particle. For the case of a spherical asteroid, it can be seen that the time variation of the plasma environment will not cause the particle to reimpact prematurely. We also find that the transverse electric fields present in a 3D model noticeably influence particle trajectories.;This thesis presents detailed investigations of electrostatic dust lofting and the dynamics of electrostatic levitation. The results have implications for understanding the evolution of airless bodies, the interpretation of spacecraft observations, and the design of future spacecraft. It is possible to expand the experimental work presented here by testing the influence of grain shape and polydispersity on electrostatic dust lofting. Our theoretical studies of dust levitation in a 3D model could be improved by using an accurate asteroid shape model coupled with a high fidelity plasma simulation.
机译:已经在小行星和月球表面附近研究了尘埃在静电力的作用下的行为。无气物体上的尘埃运动对于我们对这些物体的演化以及未来勘探工具的设计的理解具有重要意义。假设以静电为主的尘埃运动会引起观察到的小行星爱神星上的月球地平线辉光和尘埃池。本论文的第一个主要贡献是确定了将静电尘埃从表面静电清除所需的电场强度考虑到物体的重力(假定为球形)和尘埃颗粒之间的内聚力(假定具有月球巨石的物质特性),对月球和小行星爱神星和Itokawa进行了描述。为了解决所需的电场强度与粉尘粒径(假定为球形)之间的函数关系,我们假设粉尘颗粒上的电荷由高斯定律给出。可以看出,最容易发射中等尺寸的颗粒,而不是先前由于小颗粒内聚力占主导地位而考虑的亚微米级颗粒。此外,除非颗粒电荷被放大到超出高斯定律所预测的水平,否则使粒子膨松所需的电场强度要比可能在原地存在的电场强度大几个数量级。实验证明。将一堆均匀大小的尘粒放在等离子的偏置导电板上。我们看到,一堆15微米的尘埃比起一堆5、10、20和25微米的尘埃颗粒传播得更多。这一观察结果证实了我们对于小晶粒内聚力重要性的基于理论的预测。提出的实验证据也对地平线发光观测的解释和静电尘埃放空可行性的研究具有重要意义。尘埃粒子在等离子体鞘层中运动的动力学与发射机理无关,因为尘埃粒子的悬浮会极大地改变我们了解小行星的演变以及对未来的勘探飞行器构成危害。通过研究一维系统中一系列粒径,一系列中心体重和三种不同等离子体鞘模型的悬浮行为,我们对颗粒动力学的驱动因素有了更详细的了解。确定了预期尘埃粒子悬浮的平衡。通过将结果表示为粒子荷重比的函数,可以将平衡泛化为非球形晶粒(因为实际的月球和小行星晶粒高度成角)。值得注意的是,我们看到悬浮尘埃的行为是由颗粒大小而不是中央主体的质量驱动的。此外,我们可以开始限制导致悬浮的初始发射条件的范围。最后,我们将尘埃悬浮的一维分析扩展到3D系统。由于中心体的旋转(尤其是快速旋转的小行星的旋转),等离子体环境将通过粒子的轨迹发生根本性的变化。另外,小行星具有高度非球形的形状,因此,人体重力的变化可能会显着影响给定粒子的轨迹。对于球形小行星而言,可以看出等离子体环境的时间变化不会导致粒子过早碰撞。我们还发现3D模型中存在的横向电场显着影响粒子轨迹。本论文对静电除尘和静电悬浮动力学进行了详细的研究。这些结果对于理解无空气物体的演化,对航天器观测的解释以及未来航天器的设计具有启示意义。通过测试晶粒形状和多分散性对静电除尘的影响,可以扩展此处介绍的实验工作。通过使用精确的小行星形状模型以及高保真度的等离子体模拟,可以改善我们在3D模型中进行悬浮尘埃理论的研究。

著录项

  • 作者

    Hartzell, Christine M.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2012
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号