首页> 美国卫生研究院文献>Wiley-Blackwell Online Open >Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy
【2h】

Measuring spatiotemporal variation in snow optical grain size under a subalpine forest canopy using contact spectroscopy

机译:利用接触光谱法测量亚高山森林冠层下雪光学粒径的时空变化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The distribution of forest cover exerts strong controls on the spatiotemporal distribution of snow accumulation and snowmelt. The physical processes that govern these controls are poorly understood given a lack of detailed measurements of snow states. In this study, we address one of many measurement gaps by using contact spectroscopy to measure snow optical grain size at high spatial resolution in trenches dug between tree boles in a subalpine forest. Trenches were collocated with continuous measurements of snow depth and vertical profiles of snow temperature and supplemented with manual measurements of snow temperature, geometric grain size, grain type, and density from trench walls. There was a distinct difference in snow optical grain size between winter and spring periods. In winter and early spring, when facetted snow crystal types were dominant, snow optical grain size was 6% larger in canopy gaps versus under canopy positions; a difference that was smaller than the measurement uncertainty. By midspring, the magnitude of snow optical grain size differences increased dramatically and patterns of snow optical grain size became highly directional with 34% larger snow grains in areas south versus north of trees. In winter, snow temperature gradients were up to 5–15°C m−1 greater under the canopy due to shallower snow accumulation. However, in canopy gaps, snow depths were greater in fall and early winter and therefore more significant kinetic growth metamorphism occurred relative to under canopy positions, resulting in larger snow grains in canopy gaps. Our findings illustrate the novelty of our method of measuring snow optical grain size, allowing for future studies to advance the understanding of how forest and meteorological conditions interact to impact snowpack evolution.
机译:森林覆盖的分布对积雪和融雪的时空分布有很强的控制作用。由于缺乏对雪况的详细测量,对控制这些控制的物理过程知之甚少。在这项研究中,我们通过使用接触光谱法以高空间分辨率在亚高山森林的树les之间挖出的沟中测量雪光学粒度来解决许多测量差距之一。将沟槽与连续测量的雪深和垂直的雪温分布并置,并辅以人工测量雪温,几何晶粒尺寸,晶粒类型和沟槽壁的密度。冬季和春季之间,雪光学粒径存在明显差异。在冬季和初春,当多面雪晶类型占优势时,与冠层位置相比,冠层间隙中的雪光学晶粒尺寸大6%。差异小于测量不确定度。到仲春时,雪光学晶粒尺寸差异的幅度急剧增加,雪光学晶粒尺寸的模式变得高度定向,树木南侧与北侧的雪粒大了34%。冬季,由于积雪较浅,在冠层下的积雪温度梯度高达5–15°C m -1 。但是,在冠层间隙中,秋季和初冬的积雪深度更大,因此相对于冠层下位置,发生了更大的动力学增长变质作用,导致冠层间隙中的雪粒更大。我们的发现说明了我们测量雪光学粒度的方法的新颖性,从而可以进行进一步的研究,以加深对森林和气象条件如何相互作用以影响积雪演变的理解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号