首页> 美国卫生研究院文献>Springer Open Choice >Redox regulation of mitochondrial fission protein misfolding synaptic damage and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases
【2h】

Redox regulation of mitochondrial fission protein misfolding synaptic damage and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases

机译:线粒体裂变蛋白质错折叠突触损伤和神经元细胞死亡的氧化还原调节:对阿尔茨海默氏病和帕金森氏病的潜在影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death.
机译:正常的线粒体动力学包括裂变和融合事件,从而引起新的线粒体,这一过程称为线粒体生物发生。但是,一些神经退行性疾病表现出异常的线粒体动力学,导致形态异常,通常与线粒体活动性和细胞生物能不足有关。很少有功能异常的线粒体由于遗传突变而以家族形式发生,但更常见的是患者表现出偶发的线粒体残疾形式,这可能与多种基因(或其产物)与环境因素(G×E)的复杂相互作用有关。最近的研究表明,产生过量的一氧化氮(NO)的部分原因是淀粉样β(Aβ)蛋白质的寡聚物的产生或谷氨酸受体NMDA亚型的过度活性,可增加线粒体裂变,从而导致线粒体的坦率断裂。线粒体。 S-亚硝基化是NO与特定蛋白质硫醇基团的共价氧化还原反应,代表了一种机制,可促进NO诱导的线粒体断裂,生物能衰竭,突触损伤并最终导致神经元凋亡。在这里,我们总结了在阿尔茨海默氏病(AD)患者和动物模型中的证据,这些证据表明NO通过与动力蛋白相关的蛋白1(Drp1)的S-亚硝化作用促进了线粒体的片段化,该蛋白与线粒体分裂有关。这些发现可能为AD药物开发提供新的靶标。此外,我们审查了新的证据表明,NO水平过高引发的氧化还原反应可能导致蛋白质错误折叠,这是许多神经退行性疾病(包括AD和帕金森氏病)的标志。例如,Parkin的S-亚硝基化会破坏其E3泛素连接酶活性,从而影响路易体的形成和神经元细胞的死亡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号