首页> 美国卫生研究院文献>Springer Open Choice >Controlling Ca2+-Activated K+ Channels with Models of Ca2+ Buffering in Purkinje Cells
【2h】

Controlling Ca2+-Activated K+ Channels with Models of Ca2+ Buffering in Purkinje Cells

机译:用浦肯野细胞中的Ca2 +缓冲模型控制Ca2 +激活的K +通道

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intracellular Ca2+ concentrations play a crucial role in the physiological interaction between Ca2+ channels and Ca2+-activated K+ channels. The commonly used model, a Ca2+ pool with a short relaxation time, fails to simulate interactions occurring at multiple time scales. On the other hand, detailed computational models including various Ca2+ buffers and pumps can result in large computational cost due to radial diffusion in large compartments, which may be undesirable when simulating morphologically detailed Purkinje cell models. We present a method using a compensating mechanism to replace radial diffusion and compared the dynamics of different Ca2+ buffering models during generation of a dendritic Ca2+ spike in a single compartment model of a PC dendritic segment with Ca2+ channels of P- and T-type and Ca2+-activated K+ channels of BK- and SK-type. The Ca2+ dynamics models used are (1) a single Ca2+ pool; (2) two Ca2+ pools, respectively, for the fast and slow transients; (3) detailed Ca2+ dynamics with buffers, pump, and diffusion; and (4) detailed Ca2+ dynamics with buffers, pump, and diffusion compensation. Our results show that detailed Ca2+ dynamics models have significantly better control over Ca2+-activated K+ channels and lead to physiologically more realistic simulations of Ca2+ spikes and bursting. Furthermore, the compensating mechanism largely eliminates the effect of removing diffusion from the model on Ca2+ dynamics over multiple time scales.Electronic supplementary materialThe online version of this article (doi:10.1007/s12311-010-0224-3) contains supplementary material, which is available to authorized users.
机译:细胞内Ca 2 + 的浓度在Ca 2 + 通道与Ca 2 + 激活的K +之间的生理相互作用中起关键作用渠道。常用的模型是松弛时间短的Ca 2 + 池,无法模拟在多个时间尺度上发生的相互作用。另一方面,包括各种Ca 2 + 缓冲液和泵的详细计算模型由于在大隔室中的径向扩散而可能导致大量的计算成本,这在模拟形态学上详细的Purkinje细胞模型时可能是不希望的。我们提出了一种使用补偿机制来替代径向扩散的方法,并比较了在单个隔室中生成树突状Ca 2 + 峰的过程中不同Ca 2 + 缓冲模型的动力学BK的Ca 2 + 通道和Ca 2 + 激活的K + 通道的PC树突节段的模型-和SK型。所使用的Ca 2 + 动力学模型是(1)单个Ca 2 + 池; (2)两个Ca 2 + 池分别用于快速和慢速瞬变; (3)详细的Ca 2 + 动力学,包括缓冲,泵和扩散; (4)详细的Ca 2 + 动力学,包括缓冲器,泵浦和扩散补偿。我们的结果表明,详细的Ca 2 + 动力学模型可以更好地控制Ca 2 + 激活的K + 通道,从而在生理上更真实Ca 2 + 峰值和爆发的模拟。此外,补偿机制很大程度上消除了从模型中消除扩散对多个时间尺度上Ca 2 + 动力学的影响。电子补充材料本文的在线版本(doi:10.1007 / s12311-010-0224) -3)包含补充材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号