首页> 美国卫生研究院文献>Springer Open Choice >Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism
【2h】

Granger causality in integrated GC–MS and LC–MS metabolomics data reveals the interface of primary and secondary metabolism

机译:整合的GC-MS和LC-MS代谢组学数据中的格兰杰因果关系揭示了一级和二级代谢的界面

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metabolomics has emerged as a key technique of modern life sciences in recent years. Two major techniques for metabolomics in the last 10 years are gas chromatography coupled to mass spectrometry (GC–MS) and liquid chromatography coupled to mass spectrometry (LC–MS). Each platform has a specific performance detecting subsets of metabolites. GC–MS in combination with derivatisation has a preference for small polar metabolites covering primary metabolism. In contrast, reversed phase LC–MS covers large hydrophobic metabolites predominant in secondary metabolism. Here, we present an integrative metabolomics platform providing a mean to reveal the interaction of primary and secondary metabolism in plants and other organisms. The strategy combines GC–MS and LC–MS analysis of the same sample, a novel alignment tool MetMAX and a statistical toolbox COVAIN for data integration and linkage of Granger Causality with metabolic modelling. For metabolic modelling we have implemented the combined GC–LC–MS metabolomics data covariance matrix and a stoichiometric matrix of the underlying biochemical reaction network. The changes in biochemical regulation are expressed as differential Jacobian matrices. Applying the Granger causality, a subset of secondary metabolites was detected with significant correlations to primary metabolites such as sugars and amino acids. These metabolic subsets were compiled into a stoichiometric matrix N. Using N the inverse calculation of a differential Jacobian J from metabolomics data was possible. Key points of regulation at the interface of primary and secondary metabolism were identified.Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-012-0470-0) contains supplementary material, which is available to authorized users.
机译:近年来,代谢组学已成为现代生命科学的一项关键技术。过去十年中,代谢组学的两种主要技术是气相色谱-质谱联用(GC-MS)和液相色谱-质谱联用(LC-MS)。每个平台都有检测代谢物子集的特定性能。 GC-MS与衍生化结合使用时,偏爱覆盖初级代谢的小极性代谢物。相反,反相LC-MS涵盖了次级代谢中主要的大量疏水性代谢产物。在这里,我们提出了一个整合的代谢组学平台,为揭示植物和其他生物中主要和次要代谢的相互作用提供了一种手段。该策略结合了同一样品的GC-MS和LC-MS分析,新型比对工具MetMAX和统计工具箱COVAIN,用于数据集成以及Granger因果关系与代谢建模的链接。对于代谢建模,我们已经实现了组合的GC-LC-MS代谢组学数据协方差矩阵和基础生化反应网络的化学计量矩阵。生化调节的变化表示为差分雅可比矩阵。应用格兰杰因果关系,检测到次要代谢物的一个子集与主要代谢物(如糖和氨基酸)具有显着相关性。这些代谢子集被编译成化学计量矩阵N。使用N,可以根据代谢组学数据逆计算Jacobian J差分。电子辅助材料本文的在线版本(doi:10.1007 / s11306-012-0470-0)包含辅助材料,授权用户可以使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号