首页> 美国卫生研究院文献>Springer Open Choice >The impact of aminated surface ligands and silica shells on the stability uptake and toxicity of engineered silver nanoparticles
【2h】

The impact of aminated surface ligands and silica shells on the stability uptake and toxicity of engineered silver nanoparticles

机译:胺化表面配体和二氧化硅壳对工程银纳米颗粒的稳定性吸收性和毒性的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Inherent nanomaterial characteristics, composition, surface chemistry, and primary particle size, are known to impact particle stability, uptake, and toxicity. Nanocomposites challenge our ability to predict nanoparticle reactivity in biological systems if they are composed of materials with contrasting relative toxicities. We hypothesized that toxicity would be dominated by the nanoparticle surface (shell vs core), and that modulating the surface ligands would have a direct impact on uptake. We exposed developing zebrafish (Danio rerio) to a series of ~70 nm amine-terminated silver nanoparticles with silica shells (AgSi NPs) to investigate the relative influence of surface amination, composition, and size on toxicity. Like-sized aminated AgSi and Si NPs were more toxic than paired hydroxyl-terminated nanoparticles; however, both AgSi NPs were more toxic than the Si NPs, indicating a significant contribution of the silver core to the toxicity. Incremental increases in surface amination did not linearly increase uptake and toxicity, but did have a marked impact on dispersion stability. Mass-based exposure metrics initially supported the hypothesis that smaller nanoparticles (20 nm) would be more toxic than larger particles (70 nm). However, surface area-based metrics revealed that toxicity was independent of size. Our studies suggest that nanoparticle surfaces play a critical role in the uptake and toxicity of AgSi NPs, while the impact of size may be a function of the exposure metric used. Overall, uptake and toxicity can be dramatically altered by small changes in surface functionalization or exposure media. Only after understanding the magnitude of these changes, can we begin to understand the biologically available dose following nanoparticle exposure.Electronic supplementary materialThe online version of this article (doi:10.1007/s11051-014-2761-z) contains supplementary material, which is available to authorized users.
机译:已知固有的纳米材料特性,组成,表面化学性质和初级粒径会影响颗粒的稳定性,吸收性和毒性。如果纳米复合材料由相对毒性相反的材料组成,则它们会挑战我们预测生物系统中纳米颗粒反应性的能力。我们假设毒性将由纳米颗粒表面(壳与核)决定,而调节表面配体将直接影响摄取。我们将发育中的斑马鱼(Danio rerio)暴露于一系列带有硅胶壳(AgSi NPs)的约70 nm胺封端的银纳米颗粒,以研究表面胺化,组成和尺寸对毒性的相对影响。大小相似的胺化的AgSi和Si NPs比成对的羟基封端的纳米颗粒具有更高的毒性。然而,两种AgSi NPs的毒性都比Si NPs高,这表明银核对毒性有重大贡献。表面胺化的增量增加并没有线性增加摄取和毒性,但确实对分散体稳定性有显着影响。基于质量的暴露指标最初支持以下假设:较小的纳米粒子(20 nm)比较大的粒子(70 nm)更具毒性。但是,基于表面积的指标表明毒性与大小无关。我们的研究表明,纳米颗粒表面在AgSi NP的吸收和毒性中起着关键作用,而尺寸的影响可能是所用暴露指标的函数。总体而言,表面功能化或暴露介质的细微变化可极大地改变摄取和毒性。只有了解了这些变化的程度后,我们才能开始了解纳米粒子暴露后的生物学可用剂量。电子补充材料本文的在线版本(doi:10.1007 / s11051-014-2761-z)包含补充材料,该材料可以使用给授权用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号