首页> 美国卫生研究院文献>Portland Press Open Access >Amino acid homeostasis and signalling in mammalian cells and organisms
【2h】

Amino acid homeostasis and signalling in mammalian cells and organisms

机译:哺乳动物细胞和生物体中的氨基酸稳态和信号传递

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cells have a constant turnover of proteins that recycle most amino acids over time. Net loss is mainly due to amino acid oxidation. Homeostasis is achieved through exchange of essential amino acids with non-essential amino acids and the transfer of amino groups from oxidised amino acids to amino acid biosynthesis. This homeostatic condition is maintained through an active mTORC1 complex. Under amino acid depletion, mTORC1 is inactivated. This increases the breakdown of cellular proteins through autophagy and reduces protein biosynthesis. The general control non-derepressable 2/ATF4 pathway may be activated in addition, resulting in transcription of genes involved in amino acid transport and biosynthesis of non-essential amino acids. Metabolism is autoregulated to minimise oxidation of amino acids. Systemic amino acid levels are also tightly regulated. Food intake briefly increases plasma amino acid levels, which stimulates insulin release and mTOR-dependent protein synthesis in muscle. Excess amino acids are oxidised, resulting in increased urea production. Short-term fasting does not result in depletion of plasma amino acids due to reduced protein synthesis and the onset of autophagy. Owing to the fact that half of all amino acids are essential, reduction in protein synthesis and amino acid oxidation are the only two measures to reduce amino acid demand. Long-term malnutrition causes depletion of plasma amino acids. The CNS appears to generate a protein-specific response upon amino acid depletion, resulting in avoidance of an inadequate diet. High protein levels, in contrast, contribute together with other nutrients to a reduction in food intake.
机译:细胞具有恒定的蛋白质周转率,可以随着时间的推移回收大多数氨基酸。净损失主要是由于氨基酸氧化。稳态是通过将必需氨基酸与非必需氨基酸交换并将氨基从氧化氨基酸转移到氨基酸生物合成而实现的。通过一个活跃的mTORC1复合体可以维持这种稳态。在氨基酸消耗下,mTORC1被灭活。这通过自噬增加了细胞蛋白质的分解,并减少了蛋白质的生物合成。此外,还可激活一般控制的不可抑制的2 / ATF4途径,从而导致参与氨基酸转运和非必需氨基酸生物合成的基因转录。代谢是自动调节的,可最大程度地减少氨基酸的氧化。全身氨基酸水平也受到严格调节。食物摄入会短暂增加血浆氨基酸水平,从而刺激肌肉中胰岛素释放和mTOR依赖性蛋白合成。过多的氨基酸被氧化,导致尿素产量增加。短期禁食不会由于蛋白质合成减少和自噬发作而导致血浆氨基酸消耗。由于所有氨基酸中有一半是必不可少的事实,减少蛋白质合成和氨基酸氧化是减少氨基酸需求的仅有的两项措施。长期营养不良会导致血浆氨基酸消耗。中枢神经系统似乎会在氨基酸消耗后产生蛋白质特异性反应,从而避免饮食不足。相反,高蛋白水平与其他营养物质一起有助于减少食物摄入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号