首页> 美国卫生研究院文献>PLoS Computational Biology >Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding
【2h】

Adaptive Spike Threshold Enables Robust and Temporally Precise Neuronal Encoding

机译:自适应峰值阈值可实现鲁棒且暂时精确的神经元编码

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neural processing rests on the intracellular transformation of information as synaptic inputs are translated into action potentials. This transformation is governed by the spike threshold, which depends on the history of the membrane potential on many temporal scales. While the adaptation of the threshold after spiking activity has been addressed before both theoretically and experimentally, it has only recently been demonstrated that the subthreshold membrane state also influences the effective spike threshold. The consequences for neural computation are not well understood yet. We address this question here using neural simulations and whole cell intracellular recordings in combination with information theoretic analysis. We show that an adaptive spike threshold leads to better stimulus discrimination for tight input correlations than would be achieved otherwise, independent from whether the stimulus is encoded in the rate or pattern of action potentials. The time scales of input selectivity are jointly governed by membrane and threshold dynamics. Encoding information using adaptive thresholds further ensures robust information transmission across cortical states i.e. decoding from different states is less state dependent in the adaptive threshold case, if the decoding is performed in reference to the timing of the population response. Results from in vitro neural recordings were consistent with simulations from adaptive threshold neurons. In summary, the adaptive spike threshold reduces information loss during intracellular information transfer, improves stimulus discriminability and ensures robust decoding across membrane states in a regime of highly correlated inputs, similar to those seen in sensory nuclei during the encoding of sensory information.
机译:当突触输入转化为动作电位时,神经处理取决于信息的细胞内转化。这种转变由峰值阈值控制,峰值阈值取决于许多时间尺度上膜电位的历史。虽然在理论和实验上都已经讨论了峰值活动后阈值的适应性,但是直到最近才证明亚阈值膜状态也影响有效峰值阈值。对于神经计算的后果尚不十分清楚。我们在这里使用神经模拟和全细胞细胞内记录结合信息理论分析来解决这个问题。我们表明,自适应尖峰阈值对于紧密的输入相关性会导致更好的刺激识别,而与通过其他方式所获得的信号无关,这与刺激是以动作电位的速率还是模式进行编码无关。输入选择性的时间尺度由膜和阈值动力学共同控制。使用自适应阈值编码信息还可以确保跨皮质状态的鲁棒信息传输,即,如果参考填充响应的时序执行解码,则在自适应阈值情况下从不同状态进行解码的状态依赖性较小。体外神经记录的结果与自适应阈值神经元的模拟结果一致。总之,自适应尖峰阈值可减少细胞内信息传递过程中的信息丢失,提高刺激的可分辨性,并确保在高度相关的输入方式下跨膜状态进行鲁棒的解码,类似于在感觉信息编码过程中在感觉核中看到的那样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号