首页> 美国卫生研究院文献>PLoS Clinical Trials >Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function
【2h】

Metagenomes from High-Temperature Chemotrophic Systems Reveal Geochemical Controls on Microbial Community Structure and Function

机译:来自高温化学营养系统的元基因组揭示了微生物群落结构和功能的地球化学控制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Yellowstone caldera contains the most numerous and diverse geothermal systems on Earth, yielding an extensive array of unique high-temperature environments that host a variety of deeply-rooted and understudied Archaea, Bacteria and Eukarya. The combination of extreme temperature and chemical conditions encountered in geothermal environments often results in considerably less microbial diversity than other terrestrial habitats and offers a tremendous opportunity for studying the structure and function of indigenous microbial communities and for establishing linkages between putative metabolisms and element cycling. Metagenome sequence (14–15,000 Sanger reads per site) was obtained for five high-temperature (>65°C) chemotrophic microbial communities sampled from geothermal springs (or pools) in Yellowstone National Park (YNP) that exhibit a wide range in geochemistry including pH, dissolved sulfide, dissolved oxygen and ferrous iron. Metagenome data revealed significant differences in the predominant phyla associated with each of these geochemical environments. Novel members of the Sulfolobales are dominant in low pH environments, while other Crenarchaeota including distantly-related Thermoproteales and Desulfurococcales populations dominate in suboxic sulfidic sediments. Several novel archaeal groups are well represented in an acidic (pH 3) Fe-oxyhydroxide mat, where a higher O2 influx is accompanied with an increase in archaeal diversity. The presence or absence of genes and pathways important in S oxidation-reduction, H2-oxidation, and aerobic respiration (terminal oxidation) provide insight regarding the metabolic strategies of indigenous organisms present in geothermal systems. Multiple-pathway and protein-specific functional analysis of metagenome sequence data corroborated results from phylogenetic analyses and clearly demonstrate major differences in metabolic potential across sites. The distribution of functional genes involved in electron transport is consistent with the hypothesis that geochemical parameters (e.g., pH, sulfide, Fe, O2) control microbial community structure and function in YNP geothermal springs.
机译:黄石破火山口包含地球上数量最多,种类最全的地热系统,产生了广泛的独特高温环境,这些环境承载着各种根深蒂固且研究不足的古细菌,细菌和Eukarya。在地热环境中遇到的极端温度和化学条件的结合通常会导致微生物多样性比其他陆地生境少得多,并且为研究本地微生物群落的结构和功能以及在推定的代谢和元素循环之间建立联系提供了巨大的机会。从黄石国家公园(YNP)的地热温泉(或水池)采样的五个高温(> 65°C)化学营养型微生物群落获得了元基因组序列(每个位点的Sanger读数为14-15,000个),具有广泛的地球化学特征,包括pH值,溶解的硫化物,溶解的氧气和亚铁。元基因组数据揭示了与这些地球化学环境中的每一个相关的主要种群的显着差异。在低pH环境中,新的Sulfolobales成员占主导地位,而其他Crenarchaeota,包括远缘相关的热蛋白酶和Desulfurococcales种群,则在低氧硫化物沉积物中占主导地位。在酸性(pH 3)的Fe-oxyhydroxide垫中很好地代表了几个新的古细菌基团,其中较高的O2流入量伴随着古细菌多样性的增加。在S氧化还原,H2氧化和有氧呼吸(末端氧化)中重要的基因和途径的存在与否,为了解存在于地热系统中的土著生物的代谢策略提供了见识。元基因组序列数据的多途径和蛋白质特异性功能分析证实了系统发育分析的结果,清楚地表明了跨位点代谢潜力的主要差异。与电子传输有关的功能基因的分布与以下假说一致:地球化学参数(例如pH值,硫化物,Fe,O2)控制YNP地热泉中微生物群落的结构和功能。

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号